Purpose: In cone-beam breast CT, scattered photons form a large portion of the acquired signal, adversely impacting image quality throughout the frequency response of the imaging system. Prior simulation studies provided proof of concept for utilization of a hardware solution to prevent scatter acquisition. Here, we report the design, implementation, and characterization of an auxiliary apparatus of fluence modulation and scatter shielding that does indeed lead to projections with a reduced level of scatter.
Methods: An apparatus was designed for permanent installation within an existing cone-beam CT system. The apparatus is composed of two primary assemblies: a "Fluence Modulator" (FM) and a "Scatter Shield" (SS). The design of the assemblies enables them to operate in synchrony during image acquisition, converting the sourced x-rays into a moving narrow beam. During a projection, this narrow beam sweeps the entire fan angle coverage of the imaging system. As the two assemblies are contingent on one another, their joint implementation is described in the singular as apparatus FM-SS. The FM and the SS assemblies are each comprised a metal housing, a sensory system, and a robotic system. A controller unit handles their relative movements. A series of comparative studies were conducted to evaluate the performance of a cone-beam CT system in two "modes" of operation: with and without FM-SS installed, and to compare the results of physical implementation with those previously simulated. The dynamic range requirements of the utilized detector in the cone-beam CT imaging system were first characterized, independent of the mode of operation. We then characterized and compared the spatial resolution of the imaging system with, and without, FM-SS. A physical breast phantom, representative of an average size breast, was developed and imaged. Actual differences in signal level obtained with, versus without, FM-SS were then compared to the expected level gains based on previously reported simulations. Following these initial assessments, the scatter acquisition in each projection in both modes of operation was investigated. Finally, as an initial study of the impact of FM-SS on radiation dose in an average size breast, a series of Monte Carlo simulations were coupled with physical measurements of air kerma, with and without FM-SS.
Results: With implementation of FM-SS, the detector's required dynamic range was reduced by a factor of 5.5. Substantial reduction in the acquisition of the scattered rays, by a factor of 5.1 was achieved. With the implementation of FM-SS, deposited dose was reduced by 27% in the studied breast.
Conclusions: The disclosed implementation of FM-SS, within a cone-beam breast CT system, results in reduction of scatter-components in acquired projections, reduction of dose deposit to the breast, and relaxation of requirements for the detector's dynamic range. Controlling or correcting for patient motion occurring during image acquisition remains an open problem to be solved prior to practical clinical usage of FM-SS cone-beam breast CT.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9766875 | PMC |
http://dx.doi.org/10.1002/mp.15374 | DOI Listing |
Biosens Bioelectron
January 2025
Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, 200237, China; School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang, 832000, China. Electronic address:
RNA imaging technology is essential for understanding the complex RNA regulatory mechanisms and serves as a powerful tool for disease diagnosis. However, conventional RNA imaging methods often require multiple fluorescent tags for the specific labeling of individual targets, complicating both the imaging process and subsequent analysis. Herein, we develop an RNA sensor that integrates a blocked CRISPR RNA (crRNA)-based conformational switch with a controllable CRISPR activation (CRISPRa) system and apply for RNA imaging.
View Article and Find Full Text PDFSchizophr Res
January 2025
Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; German Center for Mental Health (DZPG), partner site Mannheim-Heidelberg-Ulm, Germany. Electronic address:
Background: Loneliness, distress from having fewer social contacts than desired, has been recognized as a significant public health crisis. Although a substantial body of research has established connections between loneliness and various forms of psychopathology, our understanding of the neural underpinnings of loneliness in schizophrenia spectrum disorders (SSD) and major depressive disorder (MDD) remains limited.
Methods: In this study, structural magnetic resonance imaging (sMRI) data were collected from 57 SSD and 45 MDD patients as well as 41 healthy controls (HC).
J Med Internet Res
January 2025
Univ Rennes, CHU Rennes, INSERM, LTSI - UMR 1099, F-35000 Rennes, France.
Background: To reduce the mortality related to bladder cancer, efforts need to be concentrated on early detection of the disease for more effective therapeutic intervention. Strong risk factors (eg, smoking status, age, professional exposure) have been identified, and some diagnostic tools (eg, by way of cystoscopy) have been proposed. However, to date, no fully satisfactory (noninvasive, inexpensive, high-performance) solution for widespread deployment has been proposed.
View Article and Find Full Text PDFJ Cardiovasc Med (Hagerstown)
February 2025
Division of Cardiology, Department of Systems Medicine, Tor Vergata University, Rome.
Atrial cardiomyopathy (AC) has been defined by the European Heart Rhythm Association as "Any complex of structural, architectural, contractile, or electrophysiologic changes in the atria with the potential to produce clinically relevant manifestations".1 The left atrium (LA) plays a key role in maintaining normal cardiac function; in fact atrial dysfunction has emerged as an essential determinant of outcomes in different clinical scenarios, such as valvular diseases, heart failure (HF), coronary artery disease (CAD) and atrial fibrillation (AF). A comprehensive evaluation, both anatomical and functional, is routinely performed in cardiac imaging laboratories.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada.
N-heterocyclic carbene (NHC)-protected gold nanoclusters display high stability and high photoluminescence, making them well-suited for fluorescence imaging and photodynamic therapeutic applications. We report herein the synthesis of two bisNHC-protected Au nanoclusters with π-extended aromatic systems. Depending on the position of the π-extended aromatic system, changes to the structure of the ligand shell in the cluster are observed, with the ability to correlate increases in rigidity with increases in fluorescence quantum yield.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!