Parkinson's disease (PD), a neurodegenerative disorder characterized by the degeneration of dopaminergic neurons, which results in the loss of motor activity. In the management of PD, the primary aim is to increase the dopamine content in the brain either by delivering the precursors of dopamine or by inhibiting the molecules responsible for dopamine degradation. Due to the low bioavailability, a higher dosage of drugs needs to be administered repeatedly for achieving the desired therapeutic effect. This repeated high dose not only increases the severe side effects but also produces tolerance in the body. Often, direct administration of drugs fails to ameliorate the symptoms as the unmodified drugs cannot cross the blood-brain barrier (BBB). Nanotherapeutic is at the forefront of the alternative treatment against the central nervous system (CNS) disorders due to the ability to circumvents the BBB. Here, all the available treatments for PD have been discussed with their limitation. The current trends of nanotherapeutics for PD have been explored. Suitability and formulation prospects for nasal delivery have been analyzed in detail to explore new research scope. The most effective approach is the nose-to-brain delivery for targeting drugs directly to the brain. This delivery bypasses the BBB and concentrates more drugs at the target site. Thus, developments of nose-to-brain delivery of nanoformulations explicit the new scope to manage PD better. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/wnan.1768 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!