The industries and metropolitan wastes produced by anthropogenic activities are of great concern for nature as it causes soil contamination and deteriorate the environment. Plastic utilization is rapidly enhancing globally with passing days that last for a more extended period in the environment due to slow decomposition and natural degradation. Excessive use of polymer has risked the life of both marine, freshwater and terrestrial organisms. Lack of proper waste management and inappropriate disposal leads to environmental threats. Bioremediation processes involve microbes such as fungi, bacteria, etc. which contribute a crucial role in the breakdown of plastics. Extremophiles secrete extremozymes that are functionally active in extreme conditions and are highly crucial for polymer disaggregation in those conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/lam.13616 | DOI Listing |
Biodegradation
January 2025
Master's Program of Green Energy Science and Technology, Feng Chia University, Taichung City, 407102, Taiwan.
Bioplastics, particularly polyhydroxyalkanoates (PHAs), are emerging as promising alternatives to traditional materials due to their biodegradability. This study focuses on the production of PHAs as bioplastics using effluent from hydrogen production in a two-stage Biohythane Pilot Plant, which provides a low-cost substrate. The aim is to optimize production conditions, with Cupriavidus necator TISTR 1335 being used as the PHA producer.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Department of Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA, Wageningen, The Netherlands.
The biodegradation of organic aromatic compounds in subsurface environments is often hindered by limited dissolved oxygen. While oxygen supplementation can enhance in situ biodegradation, it poses financial and technical challenges. This study explores introducing low-oxygen concentrations in anaerobic environments for efficient contaminant removal, particularly in scenarios where coexisting pollutants are present.
View Article and Find Full Text PDFBiomed Res Int
January 2025
Center for Personalized Nanomedicine, Australian Institute for Bioengineering & Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia.
Environmental pollution has been a significant concern for the last few years. The leather industry significantly contributes to the economy but is one of Bangladesh's most prominent polluting industries. It is also responsible for several severe diseases such as cancer, lung diseases, and heart diseases of leather workers because they use bleaching agents and chemicals, and these have numerous adverse effects on human health.
View Article and Find Full Text PDFInt J Food Sci
January 2025
Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India.
The widespread reliance on single-use plastics (SUPs) has fostered a global throwaway culture, especially in the food packaging industry, where convenience and low cost have driven their adoption, posing serious environmental threats, particularly to marine ecosystems and biodiversity. Edible and ecofriendly packaging made from millet, specifically sorghum ( () Moench), is a promising solution to mitigate SUP consumption and promote sustainability. This study explores the development of edible sorghum bowls, enhanced through roasting and incorporating 3 g of hibiscus and rose flower powders.
View Article and Find Full Text PDFBackground: Paenibacillus polymyxa, is a Gram-positive, plant growth promoting bacterium, known for producing 98% optically pure 2,3-butanediol, an industrially valuable chemical for solvents, plasticizers and resins. Immobilization of Paenibacillus polymyxa has been proposed to improve the cell stability and efficiency of the fermentation process, reduce contamination and provide easy separation of butanediol in the culture broth as compared to conventional bioprocesses. This research aimed to explore the potential of Paenibacillus polymyxa with immobilization technique to produce 2,3-butanediol.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!