Autophagy of hepatic stellate cell induced by Clonorchis sinensis.

Mol Biol Rep

Department of Pathogen Biology & Immunology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China.

Published: March 2022

Background: Clonorchis sinensis was a food-borne zoonotic parasite in the worldwide and also an important risk factor of hepatic fibrosis. Excretory/secretion products of C. sinensis (CsESPs) are involved in parasite-host interactions and contribute to the development of hepatic damage. The aim of the present study was to investigate whether CsESPs and CsTP (adult protein) could induce autophagy of hepatic stellate cells (HSCs) and further activate HSCs so as to participate in the pathogenesis of hepatic fibrosis.

Methods And Results: The human hepatic stellate cell line LX-2 was stimulated by CsESPs and CsTP. CsESPs showed the effect on cell proliferation in methyl thiazolyl tetrazolium (MTT) assay while CsTP failed. Autophagosomes and autolysosomes were observed after the transmission mRFP-EGFP-LC3 plasmid into the LX-2 cells. CsESPs had more powerful to induce the accumulation of autophagosomes and autolysosomes to enhance autophagic flux compared with CsTP. Western-blotting analysis confirmed that the ratio of LC3-II/I in LX-2 cells was up-regulated after CsESPs treatment for 6 h, which further proved that CsESPs could induce autophagy in LX-2 cells. Meanwhile, q-PCR results showed that the mRNA levels of collagen I, collagen III and α-SMA decreased in LX-2 cells after treatment with autophagy inhibitor chloroquine, whereas they increased when combination with CsESPs.

Conclusions: These results suggested that CsESPs-induced autophagy might be involved in the activation of HSCs, and consequently participate in the pathogenesis of hepatic fibrosis caused by C. sinensis infection.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-021-07001-9DOI Listing

Publication Analysis

Top Keywords

lx-2 cells
16
hepatic stellate
12
autophagy hepatic
8
stellate cell
8
clonorchis sinensis
8
hepatic fibrosis
8
csesps cstp
8
induce autophagy
8
participate pathogenesis
8
pathogenesis hepatic
8

Similar Publications

Physicochemical characterization and antitumor activity in vitro of a polysaccharide from Christia vespertilionis.

Int J Biol Macromol

December 2024

College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, The "Double-First Class" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha 410219, China. Electronic address:

CVP-2 is a homogeneous polysaccharide extracted from the whole plant of Christia vespertilionis, with an average molecular weight of approximately 92,920 Da. Its main chain consists of repeating units of [3,5)-α-L-Araf-(1] → [5)-α-L-Araf-(1]→, with branches at the C-3 position: branch 1 is α-L-Araf-(1→, and branch 2 is α-L-Araf-(1 → 4)-. Additionally, the structure includes β-D-Gclp-(1 → [4)-β-D-Glap-(1] → 5)-α-L-Araf-(1→.

View Article and Find Full Text PDF

Multi-omics and experimental analysis unveil the key components in Scutellaria baicalensis Georgi to alleviate hepatic fibrosis via regulating cPLA2-mediated arachidonic acid metabolism.

J Transl Med

December 2024

Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China.

Background: Scutellaria baicalensis Georgi, a traditional Chinese herb, is known for its various biological effects, including antibacterial, anti-inflammatory, antioxidative, and antitumor properties. However, the function and mechanisms of methanol extract of Scutellaria baicalensis Georgi (MESB) in treating hepatic fibrosis remain unclear.

Methods: This study utilized a CCl4-induced mouse model of hepatic fibrosis to assess the effects of MESB through histopathological analysis and serum tests.

View Article and Find Full Text PDF

Aim Of The Study: This study aimed to investigate the impact of bone marrow-derived mesenchymal stem cell exosomes (BMSC-Exos) on hepatic stellate cell (HSC) activation and explore the underlying molecular mechanisms in liver fibrosis.

Material And Methods: BMSC-Exos were co-incubated with LPS-activated LX-2 cells. Fibrosis markers, iron content, malondialdehyde (MDA), glutathione (GSH), reactive oxygen species (ROS) levels, and ferroptosis-related proteins were assessed.

View Article and Find Full Text PDF

AdipoRon has been validated for its ability to reverse liver fibrosis, yet the underlying mechanisms remain to be thoroughly investigated. Collagen, predominantly synthesized and secreted in hepatic stellate cells (HSCs), relies on glycine as a crucial constituent. Activating transcription factor 4 (ATF4) serves as a pivotal transcriptional regulator in amino acid metabolism.

View Article and Find Full Text PDF

Introduction: Chrysophanol (Cho) is a natural anthraquinone with biological effects such as inducing ferroptosis and anticancer activity. The hepatitis B virus X protein (HBx) is essential for HBV replication. We aimed to identify the key pathways in HBx-induced hepatic stellate cell (HSC) activation and to characterize the potential mechanisms of action of Cho against liver fibrosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!