Excitatory and inhibitory responses to cervical root magnetic stimulation in healthy subjects.

Clin Neurophysiol Pract

IDIBAPS (Institut d'Investigació Biomèdica August Pi i Sunyer), Barcelona 08036, Spain.

Published: October 2021

Objectives: To characterize direct and reflex hand muscle responses to cervical root magnetic stimulation (CRMS) in healthy volunteers during sustained voluntary contraction.

Methods: In 18 healthy volunteers, we recorded from the first dorsal interosseous (FDI) muscle the responses to CRMS of progressively increasing intensity and level of muscle contraction. The compound muscle action potential (CMAP) and the silent period (SP) were compared to those obtained with plexus, midarm and wrist stimulation. Additionally, in a smaller number of subjects, we obtained the peristimulus time histogram (psth) of single motor unit firing in the FDI, examined the effects of vibration and recorded the modulation of sustained EMG activity in muscles of the lower limbs.

Results: Increasing CRMS intensity led to larger CMAP with no relevant changes in SP1 or SP2, except for lower amplitude of the burst interrupting the silent period (BISP). Increasing the level of muscle contraction led to reduced CMAP, shorter SP duration and increased BISP amplitude. The psth analysis showed the underlying changes in the motor unit firing frequency that corresponded to the changes seen in the CMAP and the SP with surface recordings. Progressively distal stimulation led to CMAPs of shorter latency and increased amplitude, SPs of longer latency and shorter duration, and a BISP of longer latency. Vibration led to reduction of the SP. CRMS induced SPs in muscles of the lower limb.

Conclusions: CRMS induces excitatory and inhibitory responses in hand muscles, fitting with the expected behavior of mixed nerve stimulation at very proximal sites.

Significance: Characterization of the effects of CRMS on hand muscles is of physiological and potentially clinical applicability, as it is a painless and reliable procedure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8604992PMC
http://dx.doi.org/10.1016/j.cnp.2021.10.002DOI Listing

Publication Analysis

Top Keywords

excitatory inhibitory
8
inhibitory responses
8
responses cervical
8
cervical root
8
root magnetic
8
magnetic stimulation
8
muscle responses
8
healthy volunteers
8
level muscle
8
muscle contraction
8

Similar Publications

Differential Neuronal Activation of Nociceptive Pathways in Neuropathic Pain After Spinal Cord Injury.

Cell Mol Neurobiol

January 2025

Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.

Neuropathic pain, a prevalent complication following spinal cord injury (SCI), severely impairs the life quality of patients. No ideal treatment exists due to incomplete knowledge on underlying neural processes. To explore the SCI-induced effect on nociceptive circuits, the protein expression of c-Fos was analyzed as an indicator of neuronal activation in a rat contusion model exhibiting below-level pain.

View Article and Find Full Text PDF

Background: The tooth exhibits increased sensitivity to noxious stimuli due to the dense innervation of thin myelinated Aδ fibers and unmyelinated C fibers within the dental pulp. While prior research has identified dynorphin expression in layers I-II of the dorsal horn across the spinal cord in various pain models, its functional role in trigeminal nociception, including tooth pain, remains underexplored. This study examines the potential role of dynorphin in the nociceptive processing of dental stimuli.

View Article and Find Full Text PDF

Introduction: The neuron-specific K-Cl cotransporter KCC2 maintains low intracellular chloride levels, which are crucial for fast GABAergic and glycinergic neurotransmission. KCC2 also plays a pivotal role in the development of excitatory glutamatergic neurotransmission by promoting dendritic spine maturation. The cytoplasmic C-terminal domain (KCC2-CTD) plays a critical regulatory role in the molecular mechanisms controlling the cotransporter activity through dimerization, phosphorylation, and protein interaction.

View Article and Find Full Text PDF

Voltage-gated potassium conductances [Formula: see text] play a critical role not only in normal neural function, but also in many neurological disorders and related therapeutic interventions. In particular, in an important animal model of epileptic seizures, 4-aminopyridine (4-AP) administration is thought to induce seizures by reducing [Formula: see text] in cortex and other brain areas. Interestingly, 4-AP has also been useful in the treatment of neurological disorders such as multiple sclerosis (MS) and spinal cord injury, where it is thought to improve action potential propagation in axonal fibers.

View Article and Find Full Text PDF

The hippocampus forms memories of our experiences by registering processed sensory information in coactive populations of excitatory principal cells or ensembles. Fast-spiking parvalbumin-expressing inhibitory neurons (PV INs) in the dentate gyrus (DG)-CA3/CA2 circuit contribute to memory encoding by exerting precise temporal control of excitatory principal cell activity through mossy fiber-dependent feed-forward inhibition. PV INs respond to input-specific information by coordinating changes in their intrinsic excitability, input-output synaptic-connectivity, synaptic-physiology and synaptic-plasticity, referred to here as experience-dependent PV IN plasticity, to influence hippocampal functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!