A major constraint to crop production in Sub-Saharan Africa is nutrient deficiency, especially phosphorus (P) deficiency. Phosphorus plays a crucial role in photosynthesis but is usually deficient in acidic soils since it is converted to less available forms, affecting crop yields. There is a need to improve phosphorus availability to crops for maximum production. This study assessed Minjingu phosphate rock fertilizer's impact on maize yields, soil chemical composition, and cost-effectiveness in acidic humic nitisols of Tharaka Nithi County, Upper Eastern Kenya. A field experiment in a randomized complete block design (RCBD) was set during long rains (SR2017) and Short rains (LR2018) seasons. The treatments were Minjingu phosphate rock, manure, Minjingu phosphate rock + manure, + Minjingu phosphate rock, Calcium Ammonium Nitrate (CAN) + Triple Superphosphate (TSP), and a control. Soil samples were collected at a depth of 0-20 cm before and at the end of the experiment for pH, P-sorption, and other soil nutrient determinations. Other auxiliary data collected included labor and input costs besides output prices. The CAN+TSP treatment had significantly higher grain yields (6.86 Mg ha-), while Minjingu phosphate rock on its own had the second-lowest than the control treatment (3.0 Mg ha-). Also, a similar trend in the stover yields was observed. Minjingu phosphate rock combined with either manure or led to a significant increase (over 100%) in the phosphorous levels. Sole application of Minjingu phosphate rock increased soil iron levels while magnesium, copper, and zinc levels decreased significantly. Other than the control, all treatments significantly lowered the P-sorption levels. However, CAN+TSP had the highest P-sorption (913 mg kg)while had the lowest (744 mg kg). During the LR2018 season, all treatments reached a break-even point, and the net benefit was significantly higher at P < 0.05. Conclusively, the use of phosphate rock, either solely or in combination with organic elements, improved yields, soil chemical composition, P-sorption and was very cost-effective.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8605198 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2021.e08332 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, India.
Surface water chemistry of the River Ganga at Varanasi was analyzed at 10 locations over 3 years (2019-2021) across pre-monsoon, monsoon, and post-monsoon seasons. The study aimed to assess water parameters using principal component analysis (PCA), calculate the water quality index (WQI), determine processes governing water chemistry, evaluate irrigation suitability, and estimate non-carcinogenic health risks. The physical parameters measured included pH (8.
View Article and Find Full Text PDFSci Rep
January 2025
Guizhou Energy Group Co., Ltd., Guiyang, 550081, Guizhou, China.
To investigate the statistical laws of acoustic emission energy (AEE) avalanche dynamics of sandstone under varying fracture lengths and dip angles, as well as to determine the relationship between acoustic emission (AE) parameters and damage variables, we studied the mechanical properties and AE characteristics of sandstone with a single fracture subjected to uniaxial compression with the aid of the Shimadzu AG-IS test system and the PCI-2 AE system. The AEE characteristics of fractured sandstone under load were analyzed based on the statistical method of avalanche dynamics, with emphasis on AEE distribution, aftershock sequence, and waiting time distribution. The Weibull distribution function that incorporates a correction coefficient β was employed to optimize the Weibull parameters based on the strain equivalent hypothesis theory, which led to the establishment of a statistical damage constitutive model for fractured rock.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, 100193, Beijing, PR China.
Sustainable phosphorus (P) management is essential for ensuring crop production while avoiding environmental damage and the depletion of phosphate rock reserves. Despite local demonstration scale successes, the widespread mobilization of smallholder farmers to adopt sustainable management practices remains a challenge, primarily due to the associated high costs and complicated sampling. Here, we propose a dynamic optimization of soil P status (DOP) approach aimed at managing long-term soil P status within the range of agronomic and environmental soil P thresholds, which facilitates the precise determination of optimal P application rates without the need for frequent soil testing.
View Article and Find Full Text PDFFront Microbiol
January 2025
Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory/Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, China.
Low phosphorus (P) use efficiency significantly impacts rice yields. An environmentally friendly approach to increase phosphorus absorption and utilization in rice involves the exploration of phosphorus-solubilizing fungal resources. This study aimed to isolate and characterize fungal strains from the rice rhizosphere and assess their phosphate solubilization capabilities, plant-growth-promoting (PGP) traits, and mechanisms involved.
View Article and Find Full Text PDFLangmuir
January 2025
Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources of Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.
Reverse flotation separation of muscovite from apatite using a dodecylpyridinium chloride (DPDC) ionic liquid as the collector was studied in this work. The microflotation results depicted that DPDC had a strong collecting for muscovite but had a slight collecting for apatite when using phosphoric acid as a depressant for apatite in a weakly acidic pH value pulp, artificial mixture mineral flotation showed that reverse flotation separation of muscovite from apatite can be effectively achieved in the reagent scheme of phosphoric acid/DPDC, and DPDC had a better separation performance in the muscovite/apatite system than DDA. The adsorption measurements indicated that the adsorption amount of DPDC on the apatite surface was less than that of DPDC on the muscovite surface, and the zeta potential results confirmed that a strong interaction occurred between DPDC and the muscovite surface, while an extremely weak interaction occurred between DPDC and the apatite surface in the presence of phosphoric acid at pH ∼ 5.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!