Hydrology is a major environmental factor determining plant fitness, and hydrological niche segregation (HNS) has been widely used to explain species coexistence. Nevertheless, the distribution of plant species along hydrological gradients does not only depend on their hydrological niches but also depend on their seed dispersal, with dispersal either weakening or reinforcing the effects of HNS on coexistence. However, it is poorly understood how seed dispersal responds to hydrological conditions. To close this gap, we conducted a common-garden experiment exposing five wind-dispersed plant species (, , , , and ) to different hydrological conditions. We quantified the effects of hydrological conditions on seed production and dispersal traits, and simulated seed dispersal distances with a mechanistic dispersal model. We found species-specific responses of seed production, seed dispersal traits, and predicted dispersal distances to hydrological conditions. Despite these species-specific responses, there was a general positive relationship between seed production and dispersal distance: Plants growing in favorable hydrological conditions not only produce more seeds but also disperse them over longer distances. This arises mostly because plants growing in favorable environments grow taller and thus disperse their seeds over longer distances. We postulate that the positive relationship between seed production and dispersal may reduce the concentration of each species to the environments favorable for it, thus counteracting species coexistence. Moreover, the resulting asymmetrical gene flow from favorable to stressful habitats may slow down the microevolution of hydrological niches, causing evolutionary niche conservatism. Accounting for context-dependent seed dispersal should thus improve ecological and evolutionary models for the spatial dynamics of plant populations and communities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8601872 | PMC |
http://dx.doi.org/10.1002/ece3.8305 | DOI Listing |
Ann Bot
January 2025
Unit of Ecological Genetics, Institute of Forest Biodiversity and Nature Conservation, Austrian Research Centre for Forests (BFW), Seckendorff-Gudent-Weg 8, Vienna, Vienna.
Background And Aims: Torminalis glaberrima (Gand.) Sennikov & Kurtto is a European tree species currently underutilized in forestry, valued for its high-quality wood and contribution to ecosystem stability. Despite a projected range expansion as climate change progresses, current population fragmentation levels may inhibit the species' ability to migrate and stabilize fragile forest ecosystems.
View Article and Find Full Text PDFEcol Evol
January 2025
Centro de Investigaciones sobre Desertificación CIDE CSIC-UVEG-GV Valencia Spain.
The spatial distribution pattern of plant species is frequently driven by a combination of biotic and abiotic factors that jointly influence the arrival, establishment, and reproduction of plants. Comparing the spatial distribution of a target plant species in different populations represents a robust approach to identify the underlying mechanisms. We mapped all reproductive individuals of the Iberian pear () in five plots (1.
View Article and Find Full Text PDFBiol Lett
January 2025
Department of Ecosystem Management, Climate, and Biodiversity, Institute of Wildlife Biology and Game Management, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria.
Food-hoarding granivores act as both predators and dispersers of plant seeds, resulting in facultative species interactions along a mutualism-antagonism continuum. The position along this continuum is determined by the positive and negative interactions that vary with the ratio between seed availability and animal abundance, particularly for mast-seeding species with interannual variation and spatial synchrony of seed production. Empirical data on the entire fate of seeds up to germination and the influence of rodents on seed survival is rare, resulting in a lack of consensus on their position along the mutualism-antagonism continuum.
View Article and Find Full Text PDFUnder an adaptive hypothesis, the reciprocal influence between mutualistic plants and frugivores is expected to result in suites of matching frugivore and plant traits that structure fruit consumption. Recent work has suggested fruit traits can represent adaptations to broad groups of functionally similar frugivores, but the role of frugivore traits and within-species variation in structuring fruit consumption is less understood. To address these knowledge gaps, we assess the presence of reciprocal trait matching for the mutualistic ecological network comprising of bats that feed on and disperse seeds.
View Article and Find Full Text PDFThe Asian Needle Ant, (Hymenoptera: Formicidae), has spread throughout a substantial portion of the southeastern United States where it has primarily been restricted to low elevations. We focused on the . invasion in Great Smoky Mountains National Park (GSMNP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!