Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Scientific risk assessment is an important guarantee for the healthy development of an enterprise. With the continuous development and maturity of machine learning technology, it has played an important role in the field of data prediction and risk assessment. This paper conducts research on the application of machine learning technology in enterprise risk assessment. According to the existing literature, this paper uses three machine learning algorithms, i.e., random forest (RF), support vector machine (SVM), and AdaBoost, to evaluate enterprise risk. In the specific implementation, the enterprise's risk assessment indexes are first established, which comprehensively describe the various risks faced by the enterprise through a number of parameters. Then, the three types of machine learning algorithms are trained based on historical data to build a risk assessment model. Finally, for a set of risk indicators obtained under current conditions, the risk index is output through the risk assessment model. In the experiment, some actual data are used to analyze and verify the method, and the results show that the proposed three types of machine learning algorithms can effectively evaluate enterprise risks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8610684 | PMC |
http://dx.doi.org/10.1155/2021/6049195 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!