The stabilization of transition metals as isolated centres with high areal density on suitably tailored carriers is crucial for maximizing the industrial potential of single-atom heterogeneous catalysts. However, achieving single-atom dispersions at metal contents above 2 wt% remains challenging. Here we introduce a versatile approach combining impregnation and two-step annealing to synthesize ultra-high-density single-atom catalysts with metal contents up to 23 wt% for 15 metals on chemically distinct carriers. Translation to a standardized, automated protocol demonstrates the robustness of our method and provides a path to explore virtually unlimited libraries of mono- or multimetallic catalysts. At the molecular level, characterization of the synthesis mechanism through experiments and simulations shows that controlling the bonding of metal precursors with the carrier via stepwise ligand removal prevents their thermally induced aggregation into nanoparticles. The drastically enhanced reactivity with increasing metal content exemplifies the need to optimize the surface metal density for a given application. Moreover, the loading-dependent site-specific activity observed in three distinct catalytic systems reflects the well-known complexity in heterogeneous catalyst design, which now can be tackled with a library of single-atom catalysts with widely tunable metal loadings.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41565-021-01022-yDOI Listing

Publication Analysis

Top Keywords

two-step annealing
8
ultra-high-density single-atom
8
metal contents
8
single-atom catalysts
8
metal
6
single-atom
5
scalable two-step
4
annealing method
4
method preparing
4
preparing ultra-high-density
4

Similar Publications

Tailoring selenization dynamics: How heating rate manipulates nucleation and growth boosts efficiency in kesterite solar cells.

J Chem Phys

January 2025

Institute of Photoelectronic Thin Film Devices and Technology, Tianjin Key Laboratory of Thin Film Devices and Technology, Nankai University, Tianjin 300350, China.

Kesterite Cu2ZnSn(S,Se)4 (CZTSSe) has emerged as a promising photovoltaic material due to its low cost and high stability. The CZTSSe film for high-performance solar cells can be obtained by annealing the deposited CZTS precursor films with selenium (a process known as selenization). The design of the selenization process significantly affects the quality of the absorber layer.

View Article and Find Full Text PDF

Laser Synthesis of Platinum Single-Atom Catalysts for Hydrogen Evolution Reaction.

Nanomaterials (Basel)

January 2025

Department of Materials, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.

Platinum (Pt)-based heterogeneous catalysts show excellent performance for the electrocatalytic hydrogen evolution reaction (HER); however, the high cost and earth paucity of Pt means that efforts are being directed to reducing Pt usage, whilst maximizing catalytic efficiency. In this work, a two-step laser annealing process was employed to synthesize Pt single-atom catalysts (SACs) on a MOF-derived carbon substrate. The laser irradiation of a metal-organic framework (MOF) film (ZIF67@ZIF8 composite) by rapid scanning of a ns pulsed infrared (IR; 1064 nm) laser across the freeze-dried MOF resulted in a metal-loaded graphitized film.

View Article and Find Full Text PDF

The development of new synthetic strategies to introduce and control chirality in inorganic nanostructures has been highly stimulated by the broad spectrum of potential applications of these exiting nanomaterials. Molybdenum disulfide is among the most investigated transition metal dichalcogenides due to its promising properties for applications that spread from optoelectronic to spintronic. Herein, we report a new two-step approach for the production of chiroptically active semiconductor 2H MoS2 nanosheets with chiral morphology based on the manipulation of their crystallographic structure.

View Article and Find Full Text PDF

CsPbBr3 Superstructures with Circularly Polarized Photoluminescence Obtained by the Self-Assembly and Annealing of Nanoclusters.

Angew Chem Int Ed Engl

January 2025

Zhengzhou University, College of Chemistry and Molecular Engineering, No.100 Science Avenue, Zhengzhou City, Henan Province P.R.China., Zhengzhou, Henan, CHINA.

We report a two-step approach to fabricate CsPbBr3 superstructures with strongly circularly polarized photoluminescence by self-assembly of nanoclusters on a substrate, followed by their annealing. In the first step, the nanoclusters self-assemble upon solvent evaporation, a process that forms mesoscopic superstructures whose geometrical arrangement at the µm-scale confers them optical chirality. In the second step, mild annealing of such superstructures induces the coalescence of the nanoclusters, accompanied by a continuous red shift of the photoluminescence up to 530 nm, with preservation of the µm-scale wires bundles and the chiral properties of the sample (glum = 0.

View Article and Find Full Text PDF

We reported a novel strategy by the combination of two-step annealing treatment and ionic-liquid gating technology for effectively regulating the properties of g-C3N4, especially largely reducing the recombination rate of the electron-hole pairs, with evidenced by the remarkable reduction of photoluminescence (PL) intensity. Firstly, graphitic carbon nitrides with typical layered structure were obtained by annealing melamine with temperature above 500°C. Further annealing at 600°C with much longer time (from 2 hours to 12 hours) were found to effectively reduce the imperfections or defects, and thus the PL intensity (49% reduction).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!