The characterisation of microplastics is still a challenge, and the challenge is even greater for nanoplastics, of which we only have a limited knowledge so far. Herewith we employ Raman imaging to directly visualise microplastics and nanoplastics which are released from the trimmer lines during lawn mowing. The signal-noise ratio of Raman imaging is significantly increased by generating an image from hundreds or thousands of Raman spectra, rather than from a single spectrum, and is further increased by combining with the logic-based and PCA-based algorithms. The increased signal-noise ratio enables us to capture and identify microplastics and particularly nanoplastics, including plastic fragments or shreds (with diameters / widths of 80 nm - 3 µm) and nanoparticles (with diameters of < 1000 nm) that are released during the mimicked mowing process. Using Raman imaging, we estimate that thousands of microplastics (0.1-5 mm), and billions of nanoplastics (< 1000 nm), are released per minute when a line trimmer is used to mow lawn. Overall, Raman imaging provides effective characterisation of the microplastics and is particularly suitable for nanoplastics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2021.127788 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!