Rhodium nanoparticles confined in titania nanotubes for efficient Hydrogen evolution from Ammonia Borane.

J Colloid Interface Sci

Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China.

Published: March 2022

Designing efficient catalysts for hydrogen evolution from hydrolysis of ammonia borane (AB) have attracted considerable attention. Rhodium (Rh) based catalysts with rational design present remarkable catalytic performance for the reaction. Herein, we report the confined Rh@TiO catalysts synthesized by atomic layer deposition combining with the sacrificial template approach, in which the Rh nanoparticles are uniformly confined on the inner surface of the porous titania nanotubes. The optimized catalysts show high catalytic activity with a turnover frequency value of 334.1 mol·mol·min and better durability. Mechanistic investigation demonstrates that the cleavage of OH bands in water should be the rate determining step, and the appropriate concentration of NaOH can further enhance the hydrogen evolution activity. The catalysts can also achieve the hydrogenation of various organic substrates using AB as the hydrogen source. In addition, our present strategy is general and can be extended to the synthesis of other confined catalysts for various catalytic reactions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2021.11.078DOI Listing

Publication Analysis

Top Keywords

hydrogen evolution
12
titania nanotubes
8
ammonia borane
8
catalysts
6
rhodium nanoparticles
4
confined
4
nanoparticles confined
4
confined titania
4
nanotubes efficient
4
hydrogen
4

Similar Publications

Unlocking the Key to Photocatalytic Hydrogen Production Using Electronic Mediators for Z-Scheme Water Splitting.

J Am Chem Soc

January 2025

State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China.

A prevalent challenge in particulate photocatalytic water splitting lies in the fact that while numerous photocatalysts exhibit outstanding hydrogen evolution reaction (HER) activity in organic sacrificial reagents, their performance diminishes markedly in a Z-scheme water splitting system using electronic mediators. This underlying reason remains undefined, posing a long-standing issue in photocatalytic water splitting. Herein, we unveiled that the primary reason for the decreased HER activity in electronic mediators is due to the strong adsorption of shuttle ions on cocatalyst surfaces, which inhibits the initial proton reduction and results in a severe backward reaction of the oxidized shuttle ions.

View Article and Find Full Text PDF

Electrochemical Ammonia Synthesis at -Block Active Sites Using Various Nitrogen Sources: Theoretical Insights.

J Phys Chem Lett

January 2025

School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.

Electrochemical nitrogen conversion for ammonia (NH) synthesis, driven by renewable electricity, offers a sustainable alternative to the traditional Haber-Bosch process. However, this conversion process remains limited by a low Faradaic efficiency (FE) and NH yield. Although transition metals have been widely studied as catalysts for NH synthesis through effective electron donation/back-donation mechanisms, there are challenges in electrochemical environments, including competitive hydrogen evolution reaction (HER) and catalyst stability issues.

View Article and Find Full Text PDF

Electrochemical nitrate reduction (NORR) to ammonia presents a promising alternative strategy to the traditional Haber-Bosch process. However, the competitive hydrogen evolution reaction (HER) reduces the Faradaic efficiency toward ammonia, while the oxygen evolution reaction (OER) increases the energy consumption. This study designs IrCu alloy nanoparticles as a bifunctional catalyst to achieve efficient NORR and OER while suppressing the unwanted HER.

View Article and Find Full Text PDF

Unveiling of Hydrogen Spillover Mechanisms on Tungsten Oxide Surfaces.

J Am Chem Soc

January 2025

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

Hydrogen spillover is an important process in catalytic hydrogenation reactions, facilitating H activation and modulating surface chemistry of reducible oxide catalysts. This study focuses on the unveiling of platinum-induced hydrogen spillover on monoclinic tungsten trioxide (γ-WO), employing ambient pressure X-ray photoelectron spectroscopy, density functional theory calculations and microkinetic modeling to investigate the dynamic evolution of surface states at varied temperatures. At room temperature, hydrogen spillover results in the formation of W and hydrogen intermediates (hydroxyl species and adsorbed water), facilitated by Pt metal clusters.

View Article and Find Full Text PDF

In current study, microstructural, mechanical and corrosion behaviour were investigated with incorporation of dual reinforced AZ91D surface composites. This research was carried out for enhancement of the bio-degradability in biological environment. The surface composites were successfully fabricated by friction stir processing method with a rotation speed of 800 rpm, travel speed of 80 mm/min and 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!