A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The synergistic effect of carbon edges and dopants towards efficient oxygen reduction reaction. | LitMetric

The synergistic effect of carbon edges and dopants towards efficient oxygen reduction reaction.

J Colloid Interface Sci

School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China. Electronic address:

Published: March 2022

Decoration with alien atoms and increasing the edge content are two valid ways to activate the oxygen reduction reaction (ORR) property of nanocarbons. To further enhance their intrinsic activity and explore the underlying ORR mechanism, graphene nanoribbons (GNRs) were selected as an ideal catalyst model. Theoretical simulations have predicted that with the synergistic effect between heteroatom-doping and edge sites, the ORR activity can be significantly improved. Inspired by this, N-GNRs were synthesized via the oxidative unzipping of CNTs followed by nitrogen incorporation with urea. Ample edges and nitrogen doping sites were detected by high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy, respectively. As a result, N-GNRs exhibited remarkably higher ORR properties in terms of onset and half-wave potentials, Tafel slopes, electron transfer number and methanol tolerance than either GNRs, the control sample without doping, or N-CNTs, the control sample without abundant edges, simply clarifying the significance of synergy between dopants and edges. Thus, this work provides a simple but efficient strategy to fabricate high-performance oxygen reduction catalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2021.11.069DOI Listing

Publication Analysis

Top Keywords

oxygen reduction
12
reduction reaction
8
control sample
8
synergistic carbon
4
edges
4
carbon edges
4
edges dopants
4
dopants efficient
4
efficient oxygen
4
reaction decoration
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!