Carbohydr Polym
College of Energy, Xiamen University, Xiamen 361102, PR China. Electronic address:
Published: January 2022
Recently, great efforts have been devoted to developing conductive adhesive hydrogels to meet the needs of various applications. However, grand challenges remain in achieving anisotropic hydrogels simultaneously featuring multiple properties using natural polymers and renewable resources. Here, a cellulose-based conductive hydrogel with strong, ultrastretchable, and adhesive properties is prepared via a simple magnetic field-induced strategy. This strategy involves the formation of a suspension mixture with well-oriented cellulose-polydopamine nanocomposites under magnetic fields, followed by rapid orientation via covalent crosslinking. The tensile strength of the oriented hydrogel in longitudinal direction is ~0.22 MPa, which is ~1.4 times higher than that in radial direction. Moreover, the hydrogel shows good cyclic loading-unloading ability, high conductivity (6.9 ± 0.6 S m), and strong adhesion (71 kPa). The hydrogel also shows significant anisotropic properties and made it a versatile platform for wearable sensors to monitor large and subtle human motion in the foreseeable future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2021.118783 | DOI Listing |
J Chem Phys
December 2024
Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
In this work, a model for anisotropic interactions between proteins and cellular membranes is proposed for large-scale continuum simulations. The framework of the model is based on dynamic density functional theory, which provides a formalism to describe the lipid densities within the membrane as continuum fields while still maintaining the fidelity of the underlying molecular interactions. Within this framework, we extend recent results to include the anisotropic effects of protein-lipid interactions.
View Article and Find Full Text PDFEntropy (Basel)
December 2024
Department of Mathematics, College of Staten Island, The City University of New York, 2800 Victory Blvd., Staten Island, NY 10314, USA.
Between 2007 and 2018, we collaborated extensively with Pál Révész and Miklós Csörgő on many of the problems discussed in this paper. Over the past six years, we have continued to explore these issues, and here, we present some of the most intriguing open questions in these areas. This paper compiles key results from a dozen of our previous works, providing the necessary background to frame these compelling unresolved questions.
View Article and Find Full Text PDFNatl Sci Rev
January 2025
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
Two-dimensional (2D) van der Waals (vdW) materials are known for their intriguing physical properties, but their rational design and synthesis remain a great challenge for chemists. In this work, we successfully synthesized a new non-centrosymmetric oxide, i.e.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea.
Perpendicular nanochannel creation of two-dimensional (2D) nanostructures requires highly controlled anisotropic drilling processes of the entire structure via void formation. However, chemical approaches for the creation of porosity and defects of 2D nanostructures have been challenging due to the strong basal plane chemical stability and the use of harsh reactants, tending to give randomly corroded 2D structures. In this study, we introduce Lewis acid-base conjugates (LABCs) as molecular drillers with attenuated chemical reactivity which results in the well-defined perpendicular nanochannel formation of 2D TiS nanoplates.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Mechanical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
Directional wetting of liquids on solid surfaces is crucial for numerous applications. However, the impact of physical modifications on near-superhydrophilic cellulose has received limited attention as it is widely considered unfeasible. In this study, we present a previously unreported and simple but effective mechanism of directional wetting induced purely by physical modifications on pristine cellulose surfaces.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.