Background: Diabetic cognitive impairment (DCI) is a serious chronic complication caused by diabetes. The pathogenesis of DCI is complex, but brain nerve injury and brain nerve cell apoptosis are important pathological changes. Multimodal brain imaging is one of the most important techniques to study the neural mechanism of the brain. For the clinical treatment of DCI, there is no effective targeted Western medicine and a lack of clear drug intervention methods. Therefore, there is an urgent need to find effective complementary and alternative methods and clarify their mechanism. This research seeks to explore the multimodal brain imaging effect of "Adjust Zang-fu and Arouse Spirit" electroacupuncture for DCI.
Methods: This clinical research will be a randomized, sham-controlled pilot trial. Eligible participants will be randomly assigned to the intervention group (n = 60) and the control group (n = 30). The intervention group will be divided into the "Adjust Zang-fu and Arouse Spirit" electroacupuncture group (n = 30) and sham electroacupuncture group (n = 30). All participants will continue to receive routine hypoglycemic therapy. The treatment period is the same in both groups. The primary outcomes include functional magnetic resonance imaging (fMRI), magnetic resonance spectroscopy (MRS), Montreal Cognitive Assessment Scale (MoCA), and Clinical Dementia Rating (CDR). The secondary outcomes include blood glucose and blood lipid tests, Instrumental Activities of Daily Living Scale (IADL), Hachinski Ischemic Scale (HIS), Self-Rating Anxiety Scale (SAS), and Self-Rating Depression Scale (SDS). Outcomes will be assessed at baseline and before and after treatment, and adverse events will be examined. Inter- and intragroup analyses will be performed.
Discussion: This randomized controlled study, combined with multimodal brain imaging techniques and a clinical evaluation scale, was designed to explore the mechanism of "Adjust Zang-fu and Arouse Spirit" electroacupuncture in improving the central nervous system in DCI.
Trial Registration: Chinese Clinical Trial Registration ChiCTR2000040268 . Registered on 26 November 2020.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8620192 | PMC |
http://dx.doi.org/10.1186/s13063-021-05842-0 | DOI Listing |
Radiology
January 2025
From the Institute of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Strasse 22, Munich 81675, Germany.
Background Studies have explored the application of multimodal large language models (LLMs) in radiologic differential diagnosis. Yet, how different multimodal input combinations affect diagnostic performance is not well understood. Purpose To evaluate the impact of varying multimodal input elements on the accuracy of OpenAI's GPT-4 with vision (GPT-4V)-based brain MRI differential diagnosis.
View Article and Find Full Text PDFHum Brain Mapp
February 2025
Department of Neurology, Centre for Leading Medicine and Advanced Technologies of IHM, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
Apathy is a common neuropsychiatric symptom following stroke, characterized by reduced goal-directed behavior. The reward decision network (RDN), which plays a crucial role in regulating goal-directed behaviors, is closely associated with apathy. However, the relationship between poststroke apathy (PSA) and RDN dysfunction remains unclear due to apathy heterogeneity, the confounding effect of depression and individual variability in lesion impacts.
View Article and Find Full Text PDFHardwareX
March 2025
National Center for Adaptive Neurotechnologies, Stratton VA Medical Center, Albany, NY, USA.
In neuroscience, accurately correlating brain activity with stimuli and other events requires precise synchronization between neural data and event timing. To achieve this, purpose-built synchronization devices are often used to detect events. This paper introduces SyncGenie, a programmable synchronization device designed for a range of uses in neuroscience research-primarily as a "trigger box" to align neurophysiological data with physical stimulus events, among other possibilities.
View Article and Find Full Text PDFFront Neurosci
January 2025
Department of Neurology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany.
Purpose Of The Report: Adults with Down Syndrome (DS) have a substantially increased risk for Alzheimer's disease (AD) due to the triplicated amyloid-precursor-protein gene on chromosome 21, resulting in amyloid and tau accumulation. However, tau PET assessments are not sufficiently implemented in DS-AD research or clinical work-up, and second-generation tau tracers such as [F]PI-2620 have not been thoroughly characterized in adults with DS. We aim at illustrating feasibility and potential diagnostic value of tau PET imaging with [F]PI-2620 for the diagnosis of DS-AD.
View Article and Find Full Text PDFFront Psychiatry
January 2025
School of Education Science, Jiangsu Normal University, Xuzhou, China.
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by significant impairments in social interaction, often manifested in facial recognition deficits. These deficits hinder individuals with ASD from recognizing facial identities and interpreting emotions, further complicating social communication. This review explores the neural mechanisms underlying these deficits, focusing on both functional anomalies and anatomical differences in key brain regions such as the fusiform gyrus (FG), amygdala, superior temporal sulcus (STS), and prefrontal cortex (PFC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!