Artificial intelligence to diagnosis distal radius fracture using biplane plain X-rays.

J Orthop Surg Res

Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan.

Published: November 2021

AI Article Synopsis

  • An AI system was developed to diagnose distal radius fractures using a modified VGG16 model, trained on a combination of X-ray images with fewer than 1,000 samples for higher diagnostic accuracy.
  • The training involved augmenting a total of 1,000 X-ray images divided between normal and fractured wrists to enhance the model's learning capability.
  • The system achieved a high diagnostic accuracy of 98.0% for distal radius fractures and 91.1% for styloid process fractures, demonstrating effectiveness even with smaller datasets.

Article Abstract

Background: Although the automatic diagnosis of fractures using artificial intelligence (AI) has recently been reported to be more accurate than those by orthopedics specialists, big data with at least 1000 images or more are required for deep learning of the convolutional neural network (CNN) to improve diagnostic accuracy. The aim of this study was to develop an AI system capable of diagnosing distal radius fractures with high accuracy even when learning with relatively small data by learning to use bi-planar X-rays images.

Methods: VGG16, a learned image recognition model, was used as the CNN. It was modified into a network with two output layers to identify the fractures in plain X-ray images. We augmented 369 plain X-ray anteroposterior images and 360 lateral images of distal radius fractures, as well as 129 anteroposterior images and 125 lateral images of normal wrists to conduct training and diagnostic tests. Similarly, diagnostic tests for fractures of the styloid process of the ulna were conducted using 189 plain X-ray anteroposterior images of fractures and 302 images of the normal styloid process. The distal radius fracture is determined by entering an anteroposterior image of the wrist for testing into the trained AI. If it identifies a fracture, it is diagnosed as the same. However, if the anteroposterior image is determined as normal, the lateral image of the same patient is entered. If a fracture is identified, the final diagnosis is fracture; if the lateral image is identified as normal, the final diagnosis is normal.

Results: The diagnostic accuracy of distal radius fractures and fractures of the styloid process of the ulna were 98.0 ± 1.6% and 91.1 ± 2.5%, respectively. The areas under the receiver operating characteristic curve were 0.991 {n = 540; 95% confidence interval (CI), 0.984-0.999} and 0.956 (n = 450; 95% CI 0.938-0.973).

Conclusions: Our method resulted in a good diagnostic rate, even when using a relatively small amount of data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8620959PMC
http://dx.doi.org/10.1186/s13018-021-02845-0DOI Listing

Publication Analysis

Top Keywords

distal radius
20
radius fractures
12
plain x-ray
12
anteroposterior images
12
styloid process
12
artificial intelligence
8
radius fracture
8
fractures
8
images
8
diagnostic accuracy
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!