Background: Barley yellow mosaic disease (BYMD) caused by Barley yellow mosaic virus (BaYMV) and Barley mild mosaic virus (BaMMV) seriously threatens the production of winter barley. Cultivating and promoting varieties that carry disease-resistant genes is one of the most powerful ways to minimize the disease's effect on yield. However, as the BYMD virus mutates rapidly, resistance conferred by the two cloned R genes to the virus had been overcome by new virus strains. There is an urgent need for novel resistance genes in barley that convey sustainable resistance to newly emerging virus strains causing BYMD.
Results: A doubled haploid (DH) population derived from a cross of SRY01 (BYMD resistant wild barley) and Gairdner (BYMD susceptible barley cultivar) was used to explore for QTL of resistance to BYMD in barley. A total of six quantitative trait loci (qRYM-1H, qRYM-2Ha, qRYM-2Hb, qRYM-3H, qRYM-5H, and qRYM-7H) related to BYMD resistance were detected, which were located on chromosomes 1H, 2H, 3H, 5H, and 7H. Both qRYM-1H and qRYM-2Ha were detected in all environments. qRYM-1H was found to be overlapped with rym7, a known R gene to the disease, whereas qRYM-2Ha is a novel QTL on chromosome 2H originated from SRY01, explaining phenotypic variation from 9.8 to 17.8%. The closely linked InDel markers for qRYM-2Ha were developed which could be used for marker-assisted selection in barley breeding. qRYM-2Hb and qRYM-3H were stable QTL for specific resistance to Yancheng and Yangzhou virus strains, respectively. qRYM-5H and qRYM-7H identified in Yangzhou were originated from Gairdner.
Conclusions: Our work is focusing on a virus disease (barley yellow mosaic) of barley. It is the first report on BYMD-resistant QTL from wild barley accessions. One novel major QTL (qRYM-2Ha) for the resistance was detected. The consistently detected new genes will potentially serve as novel sources for achieving pre-breeding barley materials with resistance to BYMD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8613928 | PMC |
http://dx.doi.org/10.1186/s12870-021-03321-x | DOI Listing |
Plant Dis
November 2024
USDA-ARS, Wheat Health, Genetics and Quality Research Unit, Washington State University, Pullman, Washington, United States, 99164;
Plant Mol Biol
November 2024
Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
Front Microbiol
October 2024
ICAR-Indian Institute of Wheat and Barley Research, Karnal, India.
Wheat is one of the most important food crop cultivated across the globe which ensures sustainability and food security to massive world's population, but its production is threatened by both biotic factors like rust (caused by species) and abiotic stresses such as salinity. In this study, 41 salt-tolerant wheat lines were screened for rust resistance at both seedling and adult plant stages. Rust resistance genes were characterized through gene matching technique and molecular markers analysis.
View Article and Find Full Text PDFPLoS Pathog
November 2024
State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling Shaanxi, China.
The interactions among viruses and host plants are complex and fascinating because these organisms interact with and adapt to each other continuously. Many plant transcription factors play important roles in plant growth and development and in the resistance to viral infection. To facilitate the infection of plants, some viral proteins typically target and inhibit the function of plant transcription factors.
View Article and Find Full Text PDFPhysiol Plant
October 2024
Department of Botany, Kurukshetra University, Kurukshetra, India.
Plant-virus-host interaction is a complex process involving several players. A constant arms race between the hosts and viruses has led to their co-evolution. Reactive oxygen species (ROS) are important signaling molecules that regulate plant growth, development, and stress responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!