Background: The KRAS exon 2 p. G12C mutation in patients with lung adenocarcinoma has been increasing in relevance due to the development and effectiveness of new treatment medications. Studies around different populations indicate that regional variability between ethnic groups and ancestries could play an essential role in developing this molecular alteration within lung cancer.

Methods: In a prospective and retrospective cohort study on samples from lung adenocarcinoma from 1000 patients from different administrative regions in Colombia were tested for the KRAS p.G12C mutation. An analysis of STR populations markers was conducted to identify substructure contributions to mutation prevalence.

Results: Included were 979 patients with a national mean frequency for the KRAS exon 2 p.G12C mutation of 7.97% (95%CI 6.27-9.66%). Variation between regions was also identified with Antioquia reaching a positivity value of 12.7% (95%CI 9.1-16.3%) in contrast to other regions such as Bogota DC (Capital region) with 5.4% (2.7-8.2%) and Bolivar with 2.4% (95%CI 0-7.2%) (p-value = 0.00262). Furthermore, Short tandem repeat population substructures were found for eight markers that strongly yielded association with KRAS exon 2 p.G12C frequency reaching an adjusted R2 of 0.945 and a p-value of < 0.0001.

Conclusions: Widespread identification of KRAS exon 2 p.G12C mutations, especially in cases where NGS is not easily achieved is feasible at a population based level that can characterize regional and national patterns of mutation status. Furthermore, this type of mutation prevalence follows a population substructure pattern that can be easily determined by population and ancestral markers such as STR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8626684PMC
http://dx.doi.org/10.1016/j.tranon.2021.101276DOI Listing

Publication Analysis

Top Keywords

kras exon
16
exon pg12c
12
mutation prevalence
8
population substructures
8
lung adenocarcinoma
8
pg12c mutation
8
mutation
7
pg12c
5
population
5
kras
5

Similar Publications

Evaluation of SNaPshot and Sanger sequencing for the detection of and mutations in a sample of Venezuelan patients with colorectal cancer.

Ecancermedicalscience

November 2024

Instituto Venezolano de Investigaciones Científicas (IVIC), Unidad de Estudios Genéticos y Forenses (UEGF), Caracas 1020, República Bolivariana de Venezuela.

Colorectal cancer (CRC) is the third most commonly occurring cancer in men and the second most commonly occurring cancer in women. The epidermal growth factor receptor (EGFR) is relevant in the development and progression of CRC, because it is part of multiple signaling pathways involved in processes of the cell cycle, their malfunction causes dysregulation and subsequently carcinogenesis. Consequently, therapies were developed with anti-EGFR monoclonal antibodies (MAbs) that improve the survival of patients with CRC.

View Article and Find Full Text PDF

SMARCA4-deficient non small cell lung cancer (SMARCA4-dNSCLC) has recently garnered increasing attention due to its high malignancy and poor prognosis. The literature suggests that in non small cell lung cancer (NSCLC), the loss of SMARCA4 frequently co-occurs with mutations in KRAS, KEAP1, and STK11 rather than in EGFR, ALK, and ROS1. Herein, we present the first documented case of SMARCA4-dNSCLC accompanied with rare mutations of EGFR exon 20 S768I and exon 18 G719X.

View Article and Find Full Text PDF

Enhanced detection of actionable mutations in NSCLC through pleural effusion cell-free DNA sequencing: A prospective study.

Eur J Cancer

January 2025

Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Rd., Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Zhongzheng Dist., Taipei City 100, Taiwan. Electronic address:

Background: Inadequate tumour samples often hinder molecular testing in non-small cell lung cancer (NSCLC). Plasma-based cell-free DNA (cfDNA) sequencing has shown promise in bypassing these tissue limitations. Nevertheless, pleural effusion (PE) samples may offer a richer cfDNA source for mutation detection in patients with malignant PE.

View Article and Find Full Text PDF

TP53 mutations and MDM2 polymorphisms in breast and ovarian cancers: amelioration by drugs and natural compounds.

Clin Transl Oncol

January 2025

Inflammation and Cancer Biology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India.

Globally, breast and ovarian cancers are major health concerns in women and account for significantly high cancer-related mortality rates. Dysregulations and mutations in genes like TP53, BRCA1/2, KRAS and PTEN increase susceptibility towards cancer. Here, we discuss the impact of mutations in the key regulatory gene, TP53 and polymorphisms in its negative regulator MDM2 which are reported to accelerate cancer progression.

View Article and Find Full Text PDF

Nearly all pancreatic adenocarcinomas (PDAC) are genomically characterized by KRAS exon 2 mutations. Most patients with PDAC present with advanced disease and are treated with cytotoxic therapy. Genomic biomarkers prognostic of disease outcomes have been challenging to identify.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!