Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To evaluate a new approach to Mucopolysaccharidosis type IIIA (MPS-IIIA), work was initiated on primary fibroblasts from a well-known mouse model in which sulfamidase deficiency correlates with the accumulation of heparan sulfate - the hallmark of this disease. Once the culture of fibroblasts was established, we observed continuous proliferation with a rapid growth rate, loss of contact inhibition and late passage stability, corresponding to a spontaneously immortalized cell line. The presence of the single point D31N mutation was verified and both rapid and abundant intracellular accumulation of low molecular weight HS was observed, confirming both genotype and phenotype. This cell line is a potential in vitro model system for future studies of MPS-IIIA prior to employing animal models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biocel.2021.106119 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!