A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Assessing microplastic exposure of large marine filter-feeders. | LitMetric

Assessing microplastic exposure of large marine filter-feeders.

Sci Total Environ

School of Biological Sciences, University of Auckland, Auckland, New Zealand. Electronic address:

Published: April 2022

Large filter-feeding animals are potential sentinels for understanding the extent of microplastic pollution, as their mode of foraging and prey mean they are continuously sampling the environment. However, there is considerable uncertainty about the total and mode of exposure (environmental vs trophic). Here, we explore microplastic exposure and ingestion by baleen whales feeding year-round in coastal Auckland waters, New Zealand. Plastic and DNA were extracted concurrently from whale scat, with 32 ± 24 (mean ± SD, n = 21) microplastics per 6 g scat sample detected. Using a novel stochastic simulation modeling incorporating new and previously published DNA diet information, we extrapolate this to total microplastic exposure levels of 24,028 (95% CI: 2119, 69,270) microplastics per mouthful of prey, or 3,408,002 microplastics (95% CI: 295,810, 10,031,370) per day, substantially higher than previous estimates for large filter-feeding animals. Critically, we find that the total exposure is four orders of magnitude more than expected from microplastic measurements of local coastal surface waters. This suggests that trophic transfer, rather than environmental exposure, is the predominant mode of exposure of large filter feeders for microplastic pollution. Measuring plastic concentration from the environment alone significantly underestimates exposure levels, an important consideration for future risk assessment studies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.151815DOI Listing

Publication Analysis

Top Keywords

microplastic exposure
12
exposure
8
exposure large
8
large filter-feeding
8
filter-feeding animals
8
microplastic pollution
8
mode exposure
8
exposure levels
8
microplastic
5
assessing microplastic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!