The Bcl-2-associated athanogene (BAG) gene is a multi-functional family of co-chaperones regulator, modulating plant stress response. Our previous study revealed that the SlBAG9 of tomato (Solanum lycopersicum) had the higher expression level induced by high-temperature (HT) at the transcriptional and protein levels, but its biological function was still unclear. Here, we conducted an in-depth analysis of SlBAG9. SlBAG9 protein was not located in the mitochondria but in the cytoplasm and nucleus. Many cis-acting elements involved in plant stress and hormone responses were located in the promoter regions of SlBAG9 including heat-shock element (HSE1). The β-glucuronidase (GUS) histochemical analysis showed that SlBAG9 promoter could drive GUS gene expression in transiently transformed Nicotiana tabacum leaves under non-inducing condition and HSE1 is critical for HT-induced GUS activity under HT. The transcription of SlBAG9 was expressed in different organs and was regulated by HT, cold, drought, and salt stresses as well as exogenous abscisic acid (ABA) and HO. To further elucidate SlBAG9 function in response to HT, the transgenic tomato plants overexpressing SlBAG9 were developed. Compared to the wild-type plants, SlBAG9-overexpressing plants exhibited more sensitivity to HT stress, reflected by the burning symptoms, the degradation of chlorophyll, and the reduction of photosynthetic rates. Additionally, SlBAG9-overexpressing lines showed higher accumulation of lipid peroxidation production (MDA) and HO, but lower activities of superoxide dismutase, catalase, and peroxidase. Therefore, it is speculated that SlBAG9 plays a negative role in thermotolerance probably by inhibition of antioxidant enzyme system leading to the oxidative damage, consequently aggravating the HT-caused injury phenotype.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2021.11.114 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!