Glaucoma is one of the leading causes of irreversible blindness and can result from abnormalities in anterior segment structures required for aqueous humor outflow, including the trabecular meshwork (TM) and Schlemm's canal (SC). Transcription factors such as AP-2β play critical roles in anterior segment development. Here, we show that the Mgp-Cre knock-in (Mgp-Cre.KI) mouse can be used to target the embryonic periocular mesenchyme giving rise to the TM and SC. Fate mapping of male and female mice indicates that AP-2β loss causes a decrease in iridocorneal angle cells derived from Mgp-Cre.KI-expressing populations compared to controls. Moreover, histological analyses revealed peripheral iridocorneal adhesions in AP-2β mutants that were accompanied by a decrease in expression of TM and SC markers, as observed using immunohistochemistry. In addition, rebound tonometry showed significantly higher intraocular pressure (IOP) that was correlated with a progressive significant loss of retinal ganglion cells, reduced retinal thickness, and reduced retinal function, as measured using an electroretinogram, in AP-2β mutants compared with controls, reflecting pathology described in late-stage glaucoma patients. Importantly, elevated IOP in AP-2β mutants was significantly reduced by treatment with latanoprost, a prostaglandin analog that increases unconventional outflow. These findings demonstrate that AP-2β is critical for TM and SC development, and that these mutant mice can serve as a model for understanding and treating progressive human primary angle-closure glaucoma.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8961273 | PMC |
http://dx.doi.org/10.1002/jnr.24982 | DOI Listing |
Stroke
January 2025
Neurology and Radiology, Massachusetts General Hospital, UNITED STATES.
Cerebral autosomal-dominant arteriopathy, subcortical infarcts, and leukoencephalopathy (CADASIL) is the most prevalent monogenic inherited cause of cerebral small-vessel disease. Despite its prevalence, there is currently no proven therapy to prevent or reverse the progression of the disease. This study aimed to characterize the functional integrity of long white matter tracts in CADASIL transgenic mice, both with and without focal white matter lesions in the corpus callosum added on, utilizing optical resting-state functional connectivity imaging alongside behavioral examinations.
View Article and Find Full Text PDFOnco Targets Ther
January 2025
Department of Pharmacology, adMare BioInnovations, Montréal, Quebec, H4S 1Z9, Canada.
The gene is nearly ubiquitously subjected to activating mutation in pancreatic adenocarcinomas (PDAC), occurring at a frequency of over 90% in tumors. Mutant KRAS drives sustained signaling through the MAPK pathway to affect frequently disrupted cancer phenotypes including transcription, proliferation and cell survival. Recent research has shown that PDAC tumor growth and survival required a guanine nucleotide exchange factor for RAS homolog family member A (RhoA) called GEF-H1.
View Article and Find Full Text PDFHortic Res
January 2025
National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China.
Branched-chain amino acids (BCAAs) are essential amino acids in tomato () required for protein synthesis, which also modulate growth and abiotic stress responses. To date, little is known about their uptake and transport in tomato especially under abiotic stress. Here, the tomato () gene was identified as an amino acid transporter that restored mutant yeast cell growth on media with a variety of amino acids, including BCAAs.
View Article and Find Full Text PDFFront Microbiol
January 2025
Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.
The opportunistic pathogen sp. ATCC 39006 (S39006) is a rod-shaped, motile, Gram-negative bacterium that produces a 𝛽-lactam antibiotic (a carbapenem) and a bioactive red-pigmented tripyrrole antibiotic, prodigiosin. It is also the only known enterobacterium that naturally produces intracellular gas vesicles (GVs), enabling cells to float in static water columns.
View Article and Find Full Text PDFFront Mol Neurosci
January 2025
Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland.
Introduction: The neuron-specific K-Cl cotransporter KCC2 maintains low intracellular chloride levels, which are crucial for fast GABAergic and glycinergic neurotransmission. KCC2 also plays a pivotal role in the development of excitatory glutamatergic neurotransmission by promoting dendritic spine maturation. The cytoplasmic C-terminal domain (KCC2-CTD) plays a critical regulatory role in the molecular mechanisms controlling the cotransporter activity through dimerization, phosphorylation, and protein interaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!