Brain research challenges supercomputing.

Science

Jülich Supercomputing Centre, Forschungszentrum Jülich, Jülich, Germany.

Published: November 2021

Big data obtained from unraveling human brain structure raise processing demands.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.abl8519DOI Listing

Publication Analysis

Top Keywords

brain challenges
4
challenges supercomputing
4
supercomputing big
4
big data
4
data unraveling
4
unraveling human
4
human brain
4
brain structure
4
structure raise
4
raise processing
4

Similar Publications

Transcranial magnetic stimulation (TMS) has the potential to yield insights into cortical functions and improve the treatment of neurological and psychiatric conditions. However, its reliability is hindered by a low reproducibility of results. Among other factors, such low reproducibility is due to structural and functional variability between individual brains.

View Article and Find Full Text PDF

Enhanced Nasal-to-Brain Drug Delivery by Multivalent Bioadhesive Nanoparticle Clusters for Cerebral Ischemic Reperfusion Injury Protection.

Acta Biomater

January 2025

School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China; School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China. Electronic address:

Following cerebral ischemia, reperfusion injury can worsen ischemia-induced functional, metabolic disturbances, and pathological damage upon blood flow restoration, potentially leading to irreversible harm. Yet, there's a dearth of advanced, localized drug delivery systems ensuring active pharmaceutical ingredient (API) efficacy in cerebral protection during ischemia-reperfusion. This study introduces a multivalent bioadhesive nanoparticle-cluster, merging bioadhesive nanoparticles (BNPs) with dendritic polyamidoamine (PAMAM), enhancing nose-to-brain delivery and brain protection efficacy against cerebral ischemia-reperfusion injuries (CIRI).

View Article and Find Full Text PDF

Local field potential (LFP) recordings using chronically implanted sensing-enabled stimulators are a powerful tool for indexing symptom presence and severity in neurological and neuropsychiatric disorders, and for enhancing our neurophysiological understanding of brain processes. LFPs have gained interest as input signals for closed-loop deep brain stimulation (DBS) and can be used to inform DBS parameter selection. LFP recordings using chronically implanted sensing-enabled stimulators have various implementational challenges.

View Article and Find Full Text PDF

Spatio-temporal transformers for decoding neural movement control.

J Neural Eng

January 2025

Department of Information Engineering, Electronics and Telecommunications, University of Rome La Sapienza, Piazzale Aldo Moro 5, Rome, 00185, ITALY.

Deep learning tools applied to high-resolution neurophysiological data have significantly progressed, offering enhanced decoding, real-time processing, and readability for practical applications. However, the design of artificial neural networks to analyze neural activity in vivo remains a challenge, requiring a delicate balance between efficiency in low-data regimes and the interpretability of the results. Approach: To address this challenge, we introduce a novel specialized transformer architecture to analyze single-neuron spiking activity.

View Article and Find Full Text PDF

Optimal placement of high-channel visual prostheses in human retinotopic visual cortex.

J Neural Eng

January 2025

Faculty of Psychology, University of Maastricht, P.O. Box 616, 6200 MD Maastricht, The Netherlands, Maastricht, 6211 LK, NETHERLANDS.

Recent strides in neurotechnology show potential to restore vision in individuals afflicted with blindness due to early visual pathway damage. As neuroprostheses mature and become available to a larger population, manual placement and evaluation of electrode designs becomes costly and impractical. An automatic method to optimize the implantation process of electrode arrays at large-scale is currently lacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!