The Arctic marine ecosystem is shaped by the seasonality of the solar cycle, spanning from 24-h light at the sea surface in summer to 24-h darkness in winter. The amount of light available for under-ice ecosystems is the result of different physical and biological processes that affect its path through atmosphere, snow, sea ice and water. In this article, we review the present state of knowledge of the abiotic (clouds, sea ice, snow, suspended matter) and biotic (sea ice algae and phytoplankton) controls on the underwater light field. We focus on how the available light affects the seasonal cycle of primary production (sympagic and pelagic) and discuss the sensitivity of ecosystems to changes in the light field based on model simulations. Lastly, we discuss predicted future changes in under-ice light as a consequence of climate change and their potential ecological implications, with the aim of providing a guide for future research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8692516PMC
http://dx.doi.org/10.1007/s13280-021-01662-3DOI Listing

Publication Analysis

Top Keywords

sea ice
12
light under-ice
8
under-ice light
8
ecological implications
8
light field
8
light
7
shine light
4
light ecological
4
implications changing
4
changing arctic
4

Similar Publications

Governance of Indigenous data in open earth systems science.

Nat Commun

January 2025

Lands of the O'odham and Yaqui peoples, Native Nations Institute, Udall Center for Studies in Public Policy, University of Arizona, Tucson, AZ, USA.

In the age of big data and open science, what processes are needed to follow open science protocols while upholding Indigenous Peoples' rights? The Earth Data Relations Working Group (EDRWG), convened to address this question and envision a research landscape that acknowledges the legacy of extractive practices and embraces new norms across Earth science institutions and open science research. Using the National Ecological Observatory Network (NEON) as an example, the EDRWG recommends actions, applicable across all phases of the data lifecycle, that recognize the sovereign rights of Indigenous Peoples and support better research across all Earth Sciences.

View Article and Find Full Text PDF

Recent rapid sea ice reduction in the Pacific sector of the Arctic Ocean is potentially associated with inflow of Pacific-origin water via the Bering Strait. For the first time, we detected remarkable subsurface warming around the Chukchi Borderland in the Arctic Ocean over the recent two decades (i.e.

View Article and Find Full Text PDF

Iceberg calving is a major contributor to Greenland's ice mass loss. Ice mélange, tightly packed sea ice and icebergs, has been hypothesized to buttress the calving fronts. However, quantifying the mélange buttressing force from field observations remains a challenge.

View Article and Find Full Text PDF

Petroleum-derived contamination is a growing hazard for the Arctic Ocean and northern marine transportation corridors. In northern settings where the accessibility to oil spills can be limited, natural attenuation is the most promising remediation process. The goal of the presented research is to evaluate the impact of biodegradation on crude oil inside sea ice.

View Article and Find Full Text PDF

Climate-driven changes in high-elevation forest distribution and reductions in snow and ice cover have major implications for ecosystems and global water security. In the Greater Yellowstone Ecosystem of the Rocky Mountains (United States), recent melting of a high-elevation (3,091 m asl) ice patch exposed a mature stand of whitebark pine () trees, located ~180 m in elevation above modern treeline, that date to the mid-Holocene (c. 5,950 to 5,440 cal y BP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!