Sodium silicate is always used as an activator for the synthesis of geopolymer. However, the effect of sodium silicate concentration on the geopolymer used as adsorbent was still unclear. Therefore, the immobilization of Sr in geopolymers activated by different concentrations of sodium silicate was studied through kinetic and isotherm modeling and solid characterizations including XRD, FTIR, TG, SEM-EDS, and N adsorption-desorption isotherm. The adsorption amount of Sr decreased with the sequence of S1, S2, and S3. According to the kinetic and isotherm modeling results, these sorption processes fitted better with pseudo-second-order, mainly governed by film diffusion. However, the diffusion mode was gradually closed to particle diffusion as for the sequence of S3, S2, and S1. Besides, the Langmuir model can be more befitting to sorption data than the Freundlich model, and the free energies decreased with the order of S1, S2, and S3. In addition, the specific surface areas did not change regularly with S1, S2, and S3. Thus, the distribution of Al tetrahedrons has a decisive role in the sorption process of Sr, even though the specific surface area is also a critical factor. More Al tetrahedrons can be formed under the activation of sodium silicate with higher concentration, leading to the low Si/Al molar ratio of the as-synthesized geopolymer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-021-17553-9 | DOI Listing |
Sci Rep
January 2025
Department of Fuel, Minerals and Metallurgical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India.
The Malanjkhand chalcopyrite deposit, India's primary copper ore producer, has potential for enhanced flotation performance. This study employs standard flotation experiments using a mechanical cell, integrating a conventional collecting agent with a novel ester-based collector blend. A three-factor, three-level Box-Behnken design systematically evaluated experimental parameters, analysed using ANOVA, cubic plots, response surface methodologies.
View Article and Find Full Text PDFSci Rep
January 2025
Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands.
This study explores the mechanical properties of geopolymer mortars incorporating ceramic and glass powders sourced from industrial waste. A Box-Behnken design was employed to assess the effects of ceramic waste powder (CWP) content, alkaline activator ratio, solution-to-binder (S: B) ratio, and oven curing duration on the mortar's performance. Compressive strengths were measured at 3 and 28 days, and regression models were developed to predict these outcomes.
View Article and Find Full Text PDFWaste Manag
December 2024
College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
With the exponential growth of global photovoltaic (PV) installed capacity, the quantity of discarded PV modules continues to rise. This study innovatively explored the sustainable recovery and utilization of raw materials from discarded solar panels, focusing on the transformation of recycled silicon into microporous silica nanoparticles (MSN). Low toxic organic solvent ethyl acetate (EA) was for the first time utilized to reduce the viscosity of ethylene-vinyl acetate (EVA) and facilitated its removal.
View Article and Find Full Text PDFSci Rep
December 2024
College of Civil and Transportation Engineering, Weifang University, Weifang, 261061, China.
The treatment and resource utilization of municipal sludge and dredged silt have been rendered urgent by the acceleration of urbanization and stricter environmental protection demands. An effective solution was developed to address the challenges of poor mechanical properties and the difficulty in directly using cement-based materials for municipal sludge treatment. The utilization of dredged silt with high water content served as the foundational skeleton material.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Material Science, BASF SE, RGA/BM-B007, Carl-Bosch-Str. 38, D-67056 Ludwigshafen, Germany.
The controlled formation and stabilization of nanoparticles is of fundamental relevance for materials science and key to many modern technologies. Common synthetic strategies to arrest growth at small sizes and prevent undesired particle agglomeration often rely on the use of organic additives and require non-aqueous media and/or high temperatures, all of which appear critical with respect to production costs, safety, and sustainability. In the present work, we demonstrate a simple one-pot process in water under ambient conditions that can produce particles of various transition metal carbonates and sulfides with sizes of only a few nanometers embedded in a silica shell, similar to particles derived from more elaborate synthesis routes, like the sol-gel process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!