Fluorescent probes for the detection of intracellular nitric oxide (NO) are abundant, but those targeted to the mitochondria are scarce. Among those molecules targeting mitochondrial NO (mNO), the majority use a triphenylphosphonium (TPP) cation as a vector to reach such organelles. Here we describe a simple molecule (mtNOpy) based on the pyrylium structure, made in a few synthetic steps, capable of detecting selectively NO (aerated medium) over other reactive species. The calculated detection limit for mtNOpy is 88 nM. The main novelty of this probe is that it has a simple molecular architecture and can act both as a fluorogenic and as a mitochondriotropic agent, without using TPP. mtNOpy has been tested in two different scenarios: (a) in a controlled environment of cell line cultures (human colon carcinoma HT-29 cells and mouse macrophage RAW 264.7 cells), using confocal laser scanning microscopy, and (b) on a much more complex sample of peripheral blood, using flow cytometry. In the first context, mtNOpy has been found to be responsive (turn-on fluorescence) to exogenous and endogenous NO stimuli ( SNAP donor and LPS stimulation, respectively). In the second area, mtNOpy has been able to discriminate between NO-generating phagocytes (neutrophils and monocytes) from other leukocytes (NK, B and T cells).

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1tb02326hDOI Listing

Publication Analysis

Top Keywords

nitric oxide
8
cell cultures
8
peripheral blood
8
mtnopy
5
detection subcellular
4
subcellular nitric
4
oxide mitochondria
4
mitochondria pyrylium
4
pyrylium probe
4
probe assays
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!