Single Cell Center of Mass for the Analysis of BMP Receptor Heterodimers Distributions.

J Imaging

Department of Cellular Biophysics-Growth Factor Mechanobiology, Max-Planck-Institute for Medical Research, 69120 Heidelberg, Germany.

Published: October 2021

At the plasma membrane, transmembrane receptors are at the interface between cells and their environment. They allow sensing and transduction of chemical and mechanical extracellular signals. The spatial distribution of receptors and the specific recruitment of receptor subunits to the cell membrane is crucial for the regulation of signaling and cell behavior. However, it is challenging to define what regulates such spatial patterns for receptor localization, as cell shapes are extremely diverse when cells are maintained in standard culture conditions. Bone morphogenetic protein receptors (BMPRs) are serine-threonine kinases, which build heteromeric complexes of BMPRI and II. These are especially interesting targets for receptor distribution studies, since the signaling pathways triggered by BMPR-complexes depends on their dimerization mode. They might exist as preformed complexes, or assemble upon binding of BMP, triggering cell signaling which leads to differentiation or migration. In this work we analyzed BMPR receptor distributions in single cells grown on micropatterns, which allow not only to control cell shape, but also the distribution of intracellular organelles and protein assemblies. We developed a script called ComRed (Center Of Mass Receptor Distribution), which uses center of mass calculations to analyze the shift and spread of receptor distributions according to the different cell shapes. ComRed was tested by simulating changes in experimental data showing that shift and spread of distributions can be reliably detected. Our ComRed-based analysis of BMPR-complexes indicates that receptor distribution depends on cell polarization. The absence of a coordinated internalization after addition of BMP suggests that a rapid and continual recycling of BMPRs might occur. Receptor complexes formation and localization in cells induced by BMP might yield insights into the local regulation of different signaling pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8620704PMC
http://dx.doi.org/10.3390/jimaging7110219DOI Listing

Publication Analysis

Top Keywords

center mass
12
receptor distribution
12
receptor
9
regulation signaling
8
cell shapes
8
signaling pathways
8
receptor distributions
8
shift spread
8
cell
7
distribution
5

Similar Publications

Nextflow4MS-DIAL: A Reproducible Nextflow-Based Workflow for Liquid Chromatography-Mass Spectrometry Metabolomics Data Processing.

J Am Soc Mass Spectrom

January 2025

Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, Florida 32611, United States.

Reproducibility in untargeted metabolomics data processing remains a significant challenge due to software limitations and the complex series of steps required. To address these issues, we developed Nextflow4MS-DIAL, a reproducible workflow for liquid chromatography-mass spectrometry (LC-MS) metabolomics data processing, validated with publicly available data from MetaboLights (MTBLS733). Nextflow4MS-DIAL automates LC-MS data processing to minimize human errors from manual data handling.

View Article and Find Full Text PDF

Background: Many studies have examined the prevalence of acetabular version (AV) and femoral version (FV) abnormalities and their effect on patient-reported outcomes (PROs) after hip arthroscopy for femoroacetabular impingement syndrome (FAIS), but few have explored the prevalence and influence of combined version (CV) abnormalities.

Purpose: To (1) describe the distribution of AV, FV, and CV in the largest cohort to date and (2) determine the relationship between AV, FV, and CV and PROs after hip arthroscopy for FAIS.

Study Design: Cohort study; Level of evidence, 3.

View Article and Find Full Text PDF

Background: Selective androgen receptor modulators (SARMs) are small-molecule compounds that exert agonist and antagonist effects on androgen receptors in a tissue-specific fashion. Because of their performance-enhancing implications, SARMs are increasingly abused by athletes. To date, SARMs have no Food and Drug Administration approved use, and recent case reports associate the use of SARMs with deleterious effects such as drug-induced liver injury, myocarditis, and tendon rupture.

View Article and Find Full Text PDF

Myocyte disarray and fibrosis are underlying pathologies of hypertrophic cardiomyopathy (HCM) caused by genetic mutations. However, the extent of their contributions has not been extensively evaluated. In this study, we investigated the effects of genetic mutations on myofiber function and fibrosis patterns in HCM.

View Article and Find Full Text PDF

Nobiletin: a potential erythropoietin receptor activator protects renal cells against hypoxia.

Apoptosis

January 2025

Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China.

Tangerine peel is a traditional Chinese herb and has been widely applied in foods and medicine for its multiple pharmacological effects. Erythropoietin receptor (EPOR), a member of the cytokine receptor family, is widely expressed in multiple tissues in especial kidney and plays protective effects in adverse physiological and pathological conditions. We hypothesized that it might be EPOR agonists existing in Tangerine peel bring such renal benefits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!