Understanding the Role of Fibroblasts following a 3D Tumoroid Implantation for Breast Tumor Formation.

Bioengineering (Basel)

Department of Medical Laboratory Sciences and Public Health, Tarleton State University, a Member of Texas A & M University System, Fort Worth, TX 76104, USA.

Published: October 2021

An understanding of the participation and modulation of fibroblasts during tumor formation and growth is still unclear. Among many speculates, one might be the technical challenge to reveal the versatile function of fibroblasts in tissue complexity, and another is the dynamics in tissue physiology and cell activity. The histology of most solid tumors shows a predominant presence of fibroblasts, suggesting that tumor cells recruit fibroblasts for breast tumor growth. In this review paper, therefore, the migration, activation, differentiation, secretion, and signaling systems that are associated with fibroblasts and cancer-associated fibroblasts (CAFs) after implantation of a breast tumoroid, i.e., a lab-generated tumor tissue into an animal, are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8615023PMC
http://dx.doi.org/10.3390/bioengineering8110163DOI Listing

Publication Analysis

Top Keywords

implantation breast
8
breast tumor
8
tumor formation
8
fibroblasts
7
tumor
5
understanding role
4
role fibroblasts
4
fibroblasts tumoroid
4
tumoroid implantation
4
formation understanding
4

Similar Publications

Immediate breast reconstruction provides breast cancer patients with a valuable opportunity to restore breast shape. However, post-reconstruction breast asymmetry remains a common issue that affects patient satisfaction. This study aims to quantify breast asymmetry after surgery using magnetic resonance imaging (MRI) and assess its impact on both breast satisfaction and overall outcome satisfaction, offering scientific evidence to guide improvements in preoperative evaluation.

View Article and Find Full Text PDF

Breast implant surgery is a popular, globally performed, and frequently requested cosmetic and reconstructive surgical procedure. Breast implant surgery can cause implant-associated systemic symptoms and types of implant-associated cancers, so it is vital to monitor patient outcomes. Most patients who undergo breast implant surgery do not experience health problems.

View Article and Find Full Text PDF

Galectin-3 secreted by triple-negative breast cancer cells regulates T cell function.

Neoplasia

December 2024

Felsenstein Medical Research Center, Beilinson Campus, Petah Tikva, Israel; Tel Aviv University, Faculty of Medicine and Health Sciences, Tel Aviv, Israel; Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel; Davidoff Cancer Center, Beilinson Campus, Petah Tikva, Israel. Electronic address:

Triple-negative breast cancer (TNBC) is an aggressive subtype that accounts for 10-15 % of breast cancer. Current treatment of high-risk early-stage TNBC includes neoadjuvant chemo-immune therapy. However, the substantial variation in immune response prompts an urgent need for new immune-targeting agents.

View Article and Find Full Text PDF

Breast implant silicone exposure induces immunogenic response and autoimmune markers in human periprosthetic tissue.

Biomaterials

December 2024

Institut de Science des Matériaux de Mulhouse (IS2M), UMR 7361 CNRS/, Université de Haute Alsace (UHA), 15 rue Jean Starcky, 68057, Mulhouse Cedex, France. Electronic address:

Silicone-based breast implants are commonly used, but there are concerns about their long-term safety. While implantation results in the formation of a periprosthetic tissue that isolates the implant from the rest of the host body, silicone can leak and reach surrounding tissues. We combined histological analysis and gene expression profiling (RNA sequencing) of samples from human patients with silicone breast implants with different fillers (silicone or serum), surface topographies and/or shell rupture, and performed systematic cross-comparisons.

View Article and Find Full Text PDF

Effective Bone Tissue Fabrication Using 3D-Printed Citrate-Based Nanocomposite Scaffolds Laden with BMP9-Stimulated Human Urine Stem Cells.

ACS Appl Mater Interfaces

December 2024

Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center; Chicago, Illinois 60637, United States.

Effective repair of large bone defects through bone tissue engineering (BTE) remains an unmet clinical challenge. Successful BTE requires optimal and synergistic interactions among biocompatible scaffolds, osteogenic factors, and osteoprogenitors to form a highly vascularized microenvironment for bone regeneration and osseointegration. We sought to develop a highly effective BTE system by using 3D printed citrate-based mPOC/hydroxyapatite (HA) composites laden with BMP9-stimulated human urine stem cells (USCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!