Kasai portoenterostomy (KP) represents the first-line treatment for biliary atresia (BA). The purpose was to compare the accuracy of quantitative parameters extracted from laboratory tests, US imaging, and MR imaging studies using machine learning (ML) algorithms to predict the long-term medical outcome in native liver survivor BA patients after KP. Twenty-four patients were evaluated according to clinical and laboratory data at initial evaluation (median follow-up = 9.7 years) after KP as having ideal ( = 15) or non-ideal ( = 9) medical outcomes. Patients were re-evaluated after an additional 4 years and classified in group 1 ( = 12) as stable and group 2 ( = 12) as non-stable in the disease course. Laboratory and quantitative imaging parameters were merged to test ML algorithms. Total and direct bilirubin (TB and DB), as laboratory parameters, and US stiffness, as an imaging parameter, were the only statistically significant parameters between the groups. The best algorithm in terms of accuracy, sensitivity, specificity, and AUCROC was naive Bayes algorithm, selecting only laboratory parameters (TB and DB). This preliminary ML analysis confirms the fundamental role of TB and DB values in predicting the long-term medical outcome for BA patients after KP, even though their values may be within the normal range. Physicians should be alert when TB and DB values change slightly.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8615125PMC
http://dx.doi.org/10.3390/bioengineering8110152DOI Listing

Publication Analysis

Top Keywords

machine learning
8
biliary atresia
8
predict long-term
8
long-term medical
8
medical outcome
8
laboratory parameters
8
patients
5
parameters
5
laboratory
5
learning evaluation
4

Similar Publications

Computational Methods for Predicting Chemical Reactivity of Covalent Compounds.

J Chem Inf Model

January 2025

Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, People's Republic of China.

In recent decades, covalent inhibitors have emerged as a promising strategy for therapeutic development, leveraging their unique mechanism of forming covalent bonds with target proteins. This approach offers advantages such as prolonged drug efficacy, precise targeting, and the potential to overcome resistance. However, the inherent reactivity of covalent compounds presents significant challenges, leading to off-target effects and toxicities.

View Article and Find Full Text PDF

Bimodal In Situ Analyzer for Circular RNA in Extracellular Vesicles Combined with Machine Learning for Accurate Gastric Cancer Detection.

Adv Sci (Weinh)

January 2025

Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Laboratory Medicine and Biotechnology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China.

Circular RNAs in extracellular vesicles (EV-circRNAs) are gaining recognition as potential biomarkers for the diagnosis of gastric cancer (GC). Most current research is focused on identifying new biomarkers and their functional significance in disease regulation. However, the practical application of EV-circRNAs in the early diagnosis of GC is yet to be thoroughly explored due to the low accuracy of EV-circRNAs analysis.

View Article and Find Full Text PDF

Bacterial Leaf Blight (BLB) usually attacks rice in the flowering stage and can cause yield losses of up to 50% in severely infected fields. The resulting yield losses severely impact farmers, necessitating compensation from the regulatory authorities. This study introduces a new pipeline specifically designed for detecting BLB in rice fields using unmanned aerial vehicle (UAV) imagery.

View Article and Find Full Text PDF

Purpose: In this study, we investigated the performance of deep learning (DL) models to differentiate between normal and glaucomatous visual fields (VFs) and classify glaucoma from early to the advanced stage to observe if the DL model can stage glaucoma as Mills criteria using only the pattern deviation (PD) plots. The DL model results were compared with a machine learning (ML) classifier trained on conventional VF parameters.

Methods: A total of 265 PD plots and 265 numerical datasets of Humphrey 24-2 VF images were collected from 119 normal and 146 glaucomatous eyes to train the DL models to classify the images into four groups: normal, early glaucoma, moderate glaucoma, and advanced glaucoma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!