Soluble redox mediators (RMs), an alternative to conventional solid catalysts, have been considered an effective countermeasure to ameliorate sluggish kinetics in the cathode of a lithium-oxygen battery recently. Nevertheless, the high mobility of RMs leads to serious redox shuttling, which induces an undesired lithium-metal degeneration and RM decomposition during trade-off catalysis against the sustainable operation of batteries. Here, a novel carbon family of graphdiyne matrix is first proposed to decouple the charge-carrying redox property of ferrocene and the shuttle effects. It is demonstrated that a ferrocene-anchored graphdiyne framework can function as stationary RM, not only preserving the redox-mediating capability of ferrocene, but also promoting the local orientated three-dimensional (3D) growth of Li O . As a result, the RM-assisted catalysis in lithium-oxygen battery remains of remarkable efficiency and stability without the depletion of oxidized RMs or lithium degradation, resulting in a significantly enhanced electrochemical performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8811833 | PMC |
http://dx.doi.org/10.1002/advs.202103964 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!