Skeletal muscle regeneration requires extracellular matrix (ECM) remodeling, including an acute and transient breakdown of collagen that produces gelatin. Although the physiological function of this process is unclear, it has inspired the application of gelatin to injured skeletal muscle for a potential pro-regenerative effect. Here, we investigated a bi-phasic effect of gelatin in skeletal muscle regeneration, mediated by the hormetic effects of reactive oxygen species (ROS). Low-dose gelatin stimulated ROS production from NADPH oxidase 2 (NOX2) and simultaneously upregulated the antioxidant system for cellular defense, reminiscent of the adaptive compensatory process during mild stress. This response triggered the release of the myokine IL-6, which stimulates myogenesis and facilitates muscle regeneration. By contrast, high-dose gelatin stimulated ROS overproduction from NOX2 and the mitochondrial chain complex, and ROS accumulation by suppressing the antioxidant system, triggering the release of TNFα, which inhibits myogenesis and regeneration. Our results have revealed a bi-phasic role of gelatin in regulating skeletal muscle repair mediated by intracellular ROS, the antioxidant system and cytokine (IL-6 and TNFα) signaling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8713995PMC
http://dx.doi.org/10.1242/dmm.049290DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
20
muscle regeneration
16
antioxidant system
12
bi-phasic gelatin
8
gelatin stimulated
8
stimulated ros
8
muscle
6
gelatin
6
skeletal
5
regeneration
5

Similar Publications

Eccentric contraction- (ECC) induced force loss is a hallmark of murine dystrophin-deficient (mdx) skeletal muscle that is used to assess efficacy of potential therapies for Duchenne muscular dystrophy. While virtually all key proteins involved in muscle contraction have been implicated in ECC force loss, a unifying mechanism that orchestrates force loss across such diverse molecular targets has not been identified. We showed that correcting defective hydrogen sulfide (H2S) signaling in mdx muscle prevented ECC force loss.

View Article and Find Full Text PDF

Background: Obesity and metabolic syndrome (MS) accelerate arterial stiffening, increasing cardiovascular (CV) risk after transplant. BMI is limited by inability to differentiate muscle, fat mass, and fat distribution patterns. The aim of this study was to identify the best anthropometric measure to detect arterial stiffness as assessed by pulse wave velocity (PWV) in a racially diverse pediatric transplant population.

View Article and Find Full Text PDF

CD9/SOX2-positive cells in the intermediate lobe of the rat pituitary gland exhibit mesenchymal stem cell characteristics.

Cell Tissue Res

January 2025

Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka, Tokyo, 181-8612, Japan.

Adult tissue stem cells of the anterior pituitary gland, CD9/SOX2-positive cells, are believed to exist in the marginal cell layer (MCL) bordering the residual lumen of the Rathke's pouch. These cells migrate from the intermediate lobe side of the MCL (IL-MCL) to the anterior lobe side of the MCL and may be involved in supplying hormone-producing cells. Previous studies reported that some SOX2-positive cells of the anterior lobe differentiate into skeletal muscle cells.

View Article and Find Full Text PDF

Anti-SRP myositis: a diagnostic and therapeutic challenge.

Turk J Pediatr

December 2024

Division of Pediatric Rheumatology, Department of Pediatrics, University of Health Sciences, Ankara Bilkent City Hospital, Ankara, Türkiye.

Background: Anti-signal recognition protein (anti-SRP) myopathy is a rare idiopathic inflammatory myopathy in children. Herein, a 3-year-old patient with severe anti-SRP myopathy showing a rapidly progressive disease course is presented in order to increase the awareness of pediatricians about idiopathic inflammatory myopathies.

Case Presentation: A previously healthy 3-year-old girl presented with progressive symmetrical proximal muscle weakness that caused difficulty in climbing stairs for two months prior to evaluation, and a marked elevation of the serum creatine kinase levels.

View Article and Find Full Text PDF

Myotonic Dystrophy type 2 (DM2) is a multisystem disease affecting many tissues, including skeletal muscle, heart, and brain. DM2 is caused by unstable expansion of CCTG repeats in an intron 1 of a gene coding for cellular nuclear binding protein (CNBP). The expanded CCTG repeats cause DM2 pathology due to the accumulation of RNA CCUG repeats, which affect RNA processing in patients' cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!