Artificial tactile sensing in next-generation robots requires the development of flexible sensors for complicated tactile force measurements in both normal and tangential directions. A variety of microstructures have been proposed to be integrated with material development for the enhanced performance of the devices. However, there remains a great challenge in this field on how to decouple contact forces in spatially arbitrary directions with the electric signal readouts. The fundamental correlation between contact force sensing and the microstructure deformations is still largely unknown. Here, we report a new method of arbitrary force deconvolution and sensitive detection of flexible contacts by a porous dielectric elastomer-based force (PDiF) sensor. Decoupling the complicated nonlinear mathematic problem reveals a critical synergy in the porous elastomer between the electrical property enhancement and the geometrical deformations induced by arbitrary contact forces. Proof-of-concept applications in flexible tactile sensing have been demonstrated with the PDiF sensors, including surface roughness discrimination, slippage detection, and real-time force mapping in handwriting. It creates an avenue for flexible sensing of the complicated contact forces with microstructure-embedded elastomeric materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0mh01359e | DOI Listing |
J Colloid Interface Sci
January 2025
Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 PR China.
The development of heterojunctions is a proven strategy to augment the photocatalytic efficiency of materials. However, the enhancement in charge transfer facilitated by a single heterojunction is inherently constrained. To overcome these limitations, we synthesized a dual S-scheme heterojunction ternary composite photocatalyst, CuO/NiAl-LDH@MIL-53(Fe), designed for efficient visible-light-driven hydrogen (H) production.
View Article and Find Full Text PDFJ Funct Morphol Kinesiol
January 2025
Department of Sports Training Science-Combats, National Taiwan Sport University, Taoyuan City 333, Taiwan.
Background/objectives: The underlying mechanisms of taekwondo-specific jumping ability among different competition levels are still unknown. This study aimed to compare vertical and horizontal stretch-shortening cycle (SSC) performance between athletes of different competitive levels and examine the relationships of force and power production abilities between those two directions in Taiwanese collegiate-level male taekwondo athletes.
Methods: Seventeen male collegiate taekwondo athletes were divided into two groups: medalists (MG, n = 8) and non-medalists (NMG, n = 9); both groups performed countermovement jumps (CMJ) on a force platform and single-leg lateral hops (SLLHs) via an optoelectronic measurement system.
Health Sci Rep
January 2025
Background And Aims: High contact stresses involving the hip have been shown to increase the risk of developing hip osteoarthritis (OA). Although several risk factors have been identified for OA, a holistic approach to predicting contributed factors toward increased hip contact stresses have not been explored. This study was conducted to comprehensively understand the effects of physical activity on high hip contact stress as predisposing factors of OA.
View Article and Find Full Text PDFHeliyon
January 2025
Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand.
Although the accumulation of random genetic mutations has been traditionally viewed as the main cause of cancer progression, altered mechanobiological profiles of the cells and microenvironment also play a major role as a mutation-independent element. To probe the latter, we have previously reported a microfluidic cell-culture platform with an integrated flexible actuator and its application for sequential cyclic compression of cancer cells. The platform is composed of a control microchannel in a top layer for introducing external pressure, and a polydimethylsiloxane (PDMS) membrane from which a monolithically-integrated actuator protrudes downwards into a cell-culture microchannel.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Jinshan College of Fujian Agriculture and Forestry University, Fuzhou 350002, China. Electronic address:
Yeast immobilization systems can recoup yeast losses in continuous batch fermentation and relieve substrate or product inhibition. We report the use of solution blow spinning process to efficiently prepare polyhydroxyalkanoate (PHB) /konjac glucomannan (KGM) nanofiber membranes as immobilization carriers for Saccharomyces cerevisiae. The prepared PHB/KGM nanofiber membranes had fiber diameters similar to the scale of yeast cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!