Dual emission in purely organic materials for optoelectronic applications.

Mater Horiz

Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham, DH1 3LE, UK.

Published: January 2021

Purely organic molecules, which emit light by dual emissive (DE) pathways, have received increased attention in the last decade. These materials are now being utilized in practical optoelectronic, sensing and biomedical applications. In order to further extend the application of the DE emitters, it is crucial to gain a fundamental understanding of the links between the molecular structure and the underlying photophysical processes. This review categorizes the types of DE according to the spin multiplicity and time range of the emission, with emphasis on recent experimental advances. The design rules towards novel DE molecular candidates, the most perspective types of DE and possible future applications are outlined. These exciting developments highlight the opportunities for new materials synthesis and pave the way for accelerated future innovation and developments in this area.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0mh01316aDOI Listing

Publication Analysis

Top Keywords

purely organic
8
dual emission
4
emission purely
4
organic materials
4
materials optoelectronic
4
optoelectronic applications
4
applications purely
4
organic molecules
4
molecules emit
4
emit light
4

Similar Publications

Image-guided photodynamic therapy is acknowledged as one of the most demonstrative therapeutic modalities for cancer treatment because of its high precision, non-invasiveness, and improved imaging ability. A series of purely organic photosensitizers denoted as BTMCz, BTMPTZ, and BTMPXZ, have been designed and synthesized and are found to exhibit both thermally activated delayed fluorescence and aggregation-induced emission simultaneously. Experimental and theoretical studies are combined to reveal that modulation of the donor of the photosensitizer enables distinct thermally activated delayed fluorescence via a second-order spin-orbit perturbation mechanism involving lowest singlet charge-transfer and higher-lying triplet locally excited states, respectively.

View Article and Find Full Text PDF

Retention mechanism on phosphodiester stationary phases in HILIC and purely aqueous mobile phase, Part I: The problem of hold-up volume determination.

J Chromatogr A

December 2024

HUN-REN Molecular Interactions in Separation Science Research Group, Ifjúság útja 6, H-7624 Pécs, Hungary; Department of Analytical and Environmental Chemistry and Szentágothai Research Center, University of Pécs, Ifjúság útja 6, H-7624 Pécs, Hungary; Institute of Bioanalysis, Medical Scool, University of Pécs, Szigeti út, H-7624 Pécs, Hungary. Electronic address:

Non-destructive chromatographic methods were used to determine the hold-up volumes of four self-packed columns containing embedded phosphate groups. The stationary phases are named Diol-P-C10, Diol-P-C18, Diol-P-Benzyl and Diol-P-Chol. The hydrophobicity of organic ligands bound to the phosphate group increases in the benzyl< decyl < octadecyl View Article and Find Full Text PDF

Article Synopsis
  • ESIPT molecules are highly useful as fluorophores for applications like bioimaging and OLEDs due to their unique fluorescence properties, but structural modifications are necessary for optimal performance.
  • A series of new ESIPT molecules (2PImBzP, 2ImBzP, and 2FImBzP) were developed by modifying imidazole-phenol cores, resulting in strong green emissions and high quantum yields (65-80%).
  • The optimized 2PImBzP OLED achieved remarkable performance with a brightness of 56,220 cd/m², a current efficiency of up to 17.66 cd/A, and an external quantum efficiency of 5.65%, demonstrating its potential in
View Article and Find Full Text PDF

Donor-acceptor dyads are promising materials for improving triplet-sensitized photon upconversion due to faster intramolecular energy transfer (ET), which unfortunately competes with charge transfer (CT) dynamics. To circumvent the issue associated with CT, we propose a novel purely organic donor-acceptor dyad, where the CT character is confined within the donor moiety. In this work, we report the synthesis and characterization of a stable organic radical donor-triplet acceptor dyad () consisting of the acceptor perylene () linked to the donor (4--carbazolyl-2,6-dichlorophenyl)-bis(2,4,6-trichlorophenyl)methyl radical ().

View Article and Find Full Text PDF

This communication introduces helical polyacetylene (P1) with an appended acceptor (A)-donor (D)-acceptor (A) conjugated chromophore as a promising ferroelectric candidate. The helical conformation of P1 leads to a highly stable chiral assembly of the appended ADA chromophores. This results in prominent ferroelectricity as evident from the superior hysteresis loop at room temperature, exhibiting a saturation polarization () value ∼2 μC cm and remanent polarization () value ∼1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!