Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Two-dimensional (2D) metal-halide perovskites are attractive for use in light harvesting and light emitting devices, presenting improved stability as compared to the more conventional three-dimensional perovskite phases. Significant attention has been paid to influencing the layer orientation of 2D perovskite phases, with the charge-carrier transport through the plane of the material being orders of magnitude more efficient than the interlayer transport. Importantly though, the thinnest members of the 2D perovskite family exhibit strong exciton binding energies, suggesting that interlayer energy transport mediated by dipole-dipole coupling may be relevant. We present transient microscopy measurements of the interlayer energy transport in the (PEA)PbI perovskite. We find efficient interlayer exciton transport (0.06 cm s), which translates into a diffusion length that exceeds 100 nm and a sub-ps timescale for energy transfer. While still slower than the in-plane exciton transport (0.2 cm s), our results show that excitonic energy transport is considerably less anisotropic than charge-carrier transport for 2D perovskites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0mh01723j | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!