A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Threshold switching memristor-based stochastic neurons for probabilistic computing. | LitMetric

Threshold switching memristor-based stochastic neurons for probabilistic computing.

Mater Horiz

Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China.

Published: February 2021

Biological neurons exhibit dynamic excitation behavior in the form of stochastic firing, rather than stiffly giving out spikes upon reaching a fixed threshold voltage, which empowers the brain to perform probabilistic inference in the face of uncertainty. However, owing to the complexity of the stochastic firing process in biological neurons, the challenge of fabricating and applying stochastic neurons with bio-realistic dynamics to probabilistic scenarios remains to be fully addressed. In this work, a novel CuS/GeSe conductive-bridge threshold switching memristor is fabricated and singled out to realize electronic stochastic neurons, which is ascribed to the similarity between the stochastic switching behavior observed in the device and that of biological ion channels. The corresponding electric circuit of a stochastic neuron is then constructed and the probabilistic firing capacity of the neuron is utilized to implement Bayesian inference in a spiking neural network (SNN). The application prospects are demonstrated on the example of a tumor diagnosis task, where common fatal diagnostic errors of a conventional artificial neural network are successfully circumvented. Moreover, in comparison to deterministic neuron-based SNNs, the stochastic neurons enable SNNs to deliver an estimate of the uncertainty in their predictions, and the fidelity of the judgement is drastically improved by 81.2%.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0mh01759kDOI Listing

Publication Analysis

Top Keywords

stochastic neurons
16
threshold switching
8
stochastic
8
biological neurons
8
stochastic firing
8
neural network
8
neurons
6
switching memristor-based
4
memristor-based stochastic
4
probabilistic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!