Owing to their natural thermally activated delayed fluorescence (TADF) characteristics, the development of exciplex emitters for organic light-emitting diodes (OLEDs) has witnessed booming progress in recent years. Formed between electron-donating and electron-accepting molecules, exciplexes with intermolecular charge transfer processes have unique advantages compared with unimolecular TADF materials, offering a new way to develop high-performance TADF emitters. In this review, a comprehensive overview of TADF exciplex emitters is presented with a focus on the relationship between the constituents of exciplexes and their electroluminescence performance. We summarize and discuss the latest and most significant developments of TADF exciplex emitters. Notably, the design principles of efficient TADF exciplex emitters are systematically categorized into three systems within this review. These progressive achievements of TADF exciplex emitters point out future challenges to trigger more research endeavors in this growing field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0mh01245a | DOI Listing |
Chem Sci
October 2024
Materials Research Centre, Indian Institute of Science Bangalore 560012 Karnataka India
Hyperfluorescence, also known as thermally activated delayed fluorescence (TADF) sensitized fluorescence, is known as a next-generation efficient and innovative process for high-performance organic light-emitting diodes (OLEDs). High external quantum efficiency (EQE) and good color purity are crucial parameters for display applications. Hyperfluorescent OLEDs (HF-OLEDs) take the lead in this respect as they utilize the advantages of both TADF emitters and fluorescent dopants, realizing high EQE with color saturation and long-term stability.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
Department of Chemical Engineering, National Tsing-Hua University, Hsinchu 30013, Taiwan, Republic of China.
Thermally activated delayed fluorescence (TADF)-based electroluminescence (EL) devices adopting a host/guest strategy in their emitting layer (EML) are capable of realizing high efficiency. However, TADF emitters composed of donor and acceptor moieties as guests dispersed in organic host materials containing a donor and/or an acceptor are subject to donor-acceptor (D-A) interactions. In addition, electron delocalization between neighboring emitter molecules could form different species of aggregates.
View Article and Find Full Text PDFChem Sci
August 2024
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University Suzhou 215123 P. R. China
Chem Mater
August 2024
Department of Chemistry, Durham University, Stockton Road, Durham DH1 3LE, U.K.
The efficiency of thermally activated delayed fluorescence (TADF) in organic materials relies on rapid intersystem crossing rates and fast conversion of triplet (T) excitons into a singlet (S) state. Heavy atoms such as sulfur or selenium are now frequently incorporated into TADF molecular structures to enhance these properties by increased spin-orbit coupling [spin orbit coupling (SOC)] between the T and S states. Here a series of donor-acceptor (D-A) molecules based on 12-benzo[4,5]thieno[2,3-]carbazole and dicyanopyridine is compared with their nonsulfur control molecules designed to probe such SOC effects.
View Article and Find Full Text PDFAdv Mater
August 2024
Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China.
Despite multiple-resonance thermally activated delayed fluorescence (MR-TADF) emitters with small full-width at half maximum are attractive for wide color-gamut display and eye-protection lighting applications, their inefficient reverse intersystem crossing (RISC) process and long exciton lifetime induce serious efficiency roll-off, which significantly limits their development. Herein, a novel device concept of building highly efficient tricomponent exciplex with multiple RISC channels is proposed to realize reduced exciton quenching and enhanced upconversion of nonradiative triplet excitons, and subsequently used as a host for high-performance MR-TADF organic light-emitting diodes (OLEDs). Compared with traditional binary exciplex, the tricomponent exciplex exhibits obviously improved photoluminescence quantum yield, emitting dipole orientation and RISC rate constant, and a record-breaking external quantum efficiency (EQE) of 30.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!