ACT001 reverses resistance of prolactinomas via AMPK-mediated EGR1 and mTOR pathways.

Endocr Relat Cancer

Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China.

Published: December 2021

Dopamine agonist (DA) is the first choice for the treatment of prolactinomas, and drug resistance is unavoidable during treatment due to the heterogeneity of tumors. The two prolactinoma cell lines (GH3 cells and MMQ cells) were found to have different sensitivity and responding modes to the cabergoline (CAB) and bromocriptine (BRC). In this research, we disclosed the capability of ACT001, a derivative of parthenolide analogs, to activate AMPK by increasing the intracellular reactive oxygen species (ROS) level and AMP/ATP ratio to reverse DA resistance through dual pathways in prolactinoma cells. The results indicated that ACT001 could reverse the CAB resistance in GH3 cells by inhibiting the mTOR signaling pathway, inducing cell death through autophagy, and reverse the BRC resistance in MMQ cells by activating the EGR1 signaling pathway, inducing cell death through apoptosis. Our results suggested that ACT001 is a promising therapeutic compound for treating DA-resistant prolactinomas.

Download full-text PDF

Source
http://dx.doi.org/10.1530/ERC-21-0215DOI Listing

Publication Analysis

Top Keywords

gh3 cells
8
mmq cells
8
signaling pathway
8
pathway inducing
8
inducing cell
8
cell death
8
resistance
5
cells
5
act001
4
act001 reverses
4

Similar Publications

Background: Seed shattering (SS) negatively impacts seed yield in Psathyrostachys juncea. Understanding and improving the SS trait requires elucidating the regulatory mechanisms of SS and identifying the key genes involved.

Results: This study presents a comprehensive analysis of the abscission zone (AZ) structures at four developmental stages in two P.

View Article and Find Full Text PDF

Peroxiredoxin 4 Ameliorates T-2 Toxin-Induced Growth Retardation in GH3 Cells by Inhibiting Oxidative Stress and Apoptosis.

Molecules

November 2024

National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China.

T-2 toxin, a highly toxic type A trichothecene, is a secondary fungal metabolite produced by various Fusarium species. The consumption of food and feed contaminated with T-2 toxin is a major factor contributing to growth retardation, posing significant risks to both human and animal health. However, the specific targets and mechanisms that mitigate T-2 toxin-induced growth retardation remain unclear.

View Article and Find Full Text PDF

Non-functioning pituitary adenomas (NFPAs) are a highly heterogeneous group and often show invasion, but few studies have explored the invasion mechanism and biomarkers for specific subtypes. This study was designed to describe the role of HIF1α and its downstream genes in specific subtypes of NFPAs. Specimens were classified into two subtypes of NFPAs: 46 null cell adenomas (28 invasive and 18 noninvasive) and 46 oncocytomas (11 invasive and 35 noninvasive).

View Article and Find Full Text PDF

Tomatidine, a major tomato glycoalkaloid, is effective for the prevention of skeletal muscle wasting and enhancing mitophagy. However, its effects on transmembrane ionic currents are not well explored. In this study, we explored the interactions between tomatidine and Na+ current.

View Article and Find Full Text PDF

Targeting RACGAP1 suppresses growth hormone pituitary adenoma growth.

Endocrine

November 2024

Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, 200040, China.

Purpose: Growth hormone pituitary adenoma (GHPA) is a major subtype of pituitary adenoma (PA), with tumor enlargement and abnormal secretion of growth hormone (GH) often causing complications. Rac GTPase-activating protein 1 (RACGAP1), a member of the guanine triphosphatase-activating protein family, is highly overexpressed in multiple tumors and promotes tumor growth. However, the role of RACGAP1 in GHPA remains unelucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!