The hydrogen evolution reaction (HER) has a key role in electrochemical water splitting. Recently a lot of attention has been dedicated to HER from single atom catalysts (SACs). The activity of SACs in HER is usually rationalized or predicted using the original model proposed by Nørskov where the free energy of a H atom adsorbed on an extended metal surface M (formation of an MH intermediate) is used to explain the trends in the exchange current for HER. However, SACs differ substantially from metal surfaces and can be considered analogues of coordination compounds. In coordination chemistry, at variance with metal surfaces, stable dihydride or dihydrogen complexes (HMH) can form. We show that the same can occur on SACs and that the formation of stable HMH intermediates, in addition to the MH one, may change the kinetics of the process. Extending the original kinetic model to the case of two intermediates (MH and HMH), one obtains a three-dimensional volcano plot for the HER on SACs. DFT numerical simulations on 55 models demonstrate that the new kinetic model may lead to completely different conclusions about the activity of SACs in HER. The results are validated against selected experimental cases. The work provides an example of the important analogies between the chemistry of SACs and that of coordination compounds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8662730 | PMC |
http://dx.doi.org/10.1021/jacs.1c10470 | DOI Listing |
J Chem Phys
September 2023
Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
In hyperpolarization experiments using parahydrogen, a partially negative line (PNL) of o-H2 is occasionally spotted in the nuclear magnetic resonance (NMR) spectra. This is a manifestation of the two-spin order (TSO) of the proton spins, appearing transiently in o-H2 molecules freshly derived from p-H2. For the TSO to be observable, the o-H2 NMR signal must be split into a doublet.
View Article and Find Full Text PDFPhys Chem Chem Phys
October 2023
Bond and Band Engineering Group, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
The metallization of alkaline earth metal hydrides offers a way to achieve near-room temperature superconductivity. In order to explore the metallization mechanism of these hydrides under pressure, a detailed understanding of the property changes of alkaline earth metal hydrides is required. Based on first-principles calculations, we have systematically investigated the dihydrides (XH, X = Be, Mg, Ca, Sr, Ba) and tetrahydrides (XH, X = Mg, Ca, Sr, Ba) of alkaline earth metals, respectively.
View Article and Find Full Text PDFChem Sci
August 2023
School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
Chiral tetrahydroquinoxalines and dihydroquinoxalinones represent the core structure of many bioactive molecules. Herein, a simple and efficient Rh-thiourea-catalyzed asymmetric hydrogenation for enantiopure tetrahydroquinoxalines and dihydroquinoxalinones was developed under 1 MPa H pressure at room temperature. The reaction was magnified to the gram scale furnishing the desired products with undamaged yield and enantioselectivity.
View Article and Find Full Text PDFInorg Chem
September 2023
Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carr. Toluca-Atlacomulco km. 14.5, Toluca, Estado de México 50200, México.
Chemistry
November 2023
Institute of Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Humboldtstraße 8, 07743, Jena, Germany.
The dinuclear bis(N-heterocyclic carbene) borane adduct 2 rapidly reacts with tritylium salts at room temperature but the outcome is strongly impacted by the respective counter-ion. Using tritylium tetrakis(perfluoro-tert-butoxy)aluminate affords - depending on the solvent - either the bis(boronium) ion 4 or the hydride-bridged dication 5. In case of tritylium hexafluorophosphate, however, H/F exchange occurs between boron and phosphorus yielding the dinuclear BF adduct 3 along with phosphorus dihydride trifluoride.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!