ATP-sensitive potassium channels (K channels) are hetero-octameric nucleotide-gated ion channels that couple cellular metabolism to excitability in various tissues. In the heart, K channels are activated during ischaemia and potentially during adrenergic stimulation. In the vasculature, they are normally active at a low level, reducing vascular tone, but the ubiquitous nature of these channels leads to complex and poorly understood channelopathies as a result of gain- or loss-of-function mutations. Zebrafish (ZF) models of these channelopathies may provide insights to the link between molecular dysfunction and complex pathophysiology, but this requires understanding the tissue dependence of channel activity and subunit specificity. Thus far, direct analysis of ZF K expression and functional properties has only been performed in pancreatic β-cells. Using a comprehensive combination of genetically modified fish, electrophysiology and gene expression analysis, we demonstrate that ZF cardiac myocytes (CM) and vascular smooth muscle (VSM) express functional K channels of similar subunit composition, structure and metabolic sensitivity to their mammalian counterparts. However, in contrast to mammalian cardiovascular K channels, ZF channels are insensitive to potassium channel opener drugs (pinacidil, minoxidil) in both chambers of the heart and in VSM. The results provide a first characterization of the molecular properties of fish K channels and validate the use of such genetically modified fish as models of human Cantú syndrome and ABCC9-related Intellectual Disability and Myopathy syndrome. KEY POINTS: Zebrafish cardiac myocytes (CM) and vascular smooth muscle (VSM) express functional K channels of similar subunit composition, structure and metabolic sensitivity to their mammalian counterparts. In contrast to mammalian cardiovascular K channels, zebrafish channels are insensitive to potassium channel opener drugs (pinacidil, minoxidil) in both chambers of the heart and in VSM. We provide a first characterization of the molecular properties of fish K channels and validate the use of such genetically modified fish as models of human Cantú syndrome and ABCC9-related Intellectual Disability and Myopathy syndrome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9764990 | PMC |
http://dx.doi.org/10.1113/JP282157 | DOI Listing |
Alzheimers Dement
December 2024
Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A., Philadelphia, PA, USA.
Background: The vicious cycle between depression and dementia increases the risk of Alzheimer's Disease (AD) pathogenesis and pathology. This study investigates therapeutic effectiveness versus side effects and the underlying mechanisms of intranasal dantrolene nanoparticles (IDNs) to treat depression behavior and memory loss in 5XFAD mice.
Method: 5XFAD and wild-type B6SJLF1/J mice were treated with IDNs (IDN, 5 mg/kg) in Ryanodex formulation for a duration of 12 weeks.
Background: While a number of recent anti-amyloid antibodies demonstrated a robust reduction of amyloid biomarkers in clinical trials, the impact on functional improvement is much more variable. We hypothesize that this larger variability is driven by comedications, common genotype variants and underlying tau pathology.
Method: In a previously calibrated computational neuroscience model of ADAS-Cog, we implemented the effect of soluble amyloid monomers and oligomers on glutamate and nicotinic AChR neurotransmission and the effect of intracellular tau oligomers on voltage-gated Na and K+ channels and synaptic density.
Background: Hypertension is a risk factor for cognitive impairment and dementia. Anti-hypertensives (AHT) are commonly used in old age, but their association with cognition and brain pathology is not well understood.
Method: To investigate the relation of AHT with change in cognitive function and postmortem brain pathology, we evaluated 4,207 older persons without known dementia at enrollment and a subset of 1880 participants who died and came to autopsy.
ACS Appl Mater Interfaces
January 2025
Institute of Electronics, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan.
Ultrathin indium oxide films show great potential as channel materials of complementary metal oxide semiconductor back-end-of-line transistors due to their high carrier mobility, smooth surface, and low leakage current. However, it has severe thermal stability problems (unstable and negative threshold voltage shifts at high temperatures). In this paper, we clarified how the improved crystallinity of indium oxide by using ultrahigh-temperature rapid thermal O annealing could reduce donor-like defects and suppress thermal-induced defects, drastically enhancing thermal stability.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Erasmus University Rotterdam, Rotterdam, Netherlands.
Background: 'Intellectual assets' generated in traditional university settings, that may not fit the interests of the standard 'valuation criteria' (i.e. commercially profitable), such as non-pharmacological dementia care research, often remain siloed within their respective research disciplines and originating institutions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!