Temporal-spatial variation, source forensics of PAHs and their derivatives in sediment from Songhua River, Northeastern China.

Environ Geochem Health

State Key Laboratory of Urban Water Resource and Environment, International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China.

Published: November 2022

The distribution patterns and health risk assessment of nitrated polycyclic aromatic hydrocarbons (NPAHs), hydroxy polycyclic aromatic hydrocarbons (OH-PAHs), and regular 16 priority polycyclic aromatic hydrocarbons (PAHs) in sediment from the Songhua River in northeastern China were investigated in this research. During dry seasons, concentrations of 16 USEPA priority PAHs, OH-PAHs, and NPAHs were extremely high, with average values of 1220 ± 288, 317 ± 641, 2.54 ± 3.98, and 12.2 ± 22.1 ng/g (dry weight, dw). The dry period level was confirmed to be 4 times greater than the wet period concentration. Modeling with positive matrix factorization (PMF) and estimation of diagnostic isomeric ratios were applied for identifying sources, according to the positive matrix factorization model: vehicle emissions (38.1%), biomass burning (25%), petroleum source (23.4%), and diesel engines source (13.5%) in wet season as well as wood combustion (44.1%), vehicle source (40.2%), coke oven (10.8%), and biomass burning (4.9%) in the dry season. The greatest seasonal variability was attributed to high molecular weight compounds (HMW PAHs). BaP was confirmed to be 81% carcinogenic in this study, which offers convincing proof of the escalating health issues.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10653-021-01106-7DOI Listing

Publication Analysis

Top Keywords

polycyclic aromatic
12
aromatic hydrocarbons
12
sediment songhua
8
songhua river
8
river northeastern
8
northeastern china
8
positive matrix
8
matrix factorization
8
biomass burning
8
temporal-spatial variation
4

Similar Publications

Draft genome sequence of sp. SA01 isolated from seedlings collected in Cape Cod (USA).

Microbiol Resour Announc

January 2025

The Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts, USA.

A draft genome was generated for a strain of closely related to sp. ENV421 isolated from plants of smooth cordgrass germinated from seeds collected in a salt marsh in Cape Cod (USA). Genomic DNA was sequenced using paired-end Illumina technologies.

View Article and Find Full Text PDF

This review explores biochar's potential as a sustainable and cost-effective solution for remediating organic pollutants, particularly polycyclic aromatic hydrocarbons (PAHs) and pesticides, in water. Biochar, a carbon-rich material produced from biomass pyrolysis, has demonstrated adsorption efficiencies exceeding 90% under optimal conditions, depending on the feedstock type, pyrolysis temperature, and functionalization. High surface area (up to 1500 m/g), porosity, and modifiable surface functional groups make biochar effective in adsorbing a wide range of contaminants, including toxic metals, organic pollutants, and nutrients.

View Article and Find Full Text PDF

Magnetic optimizing surface-enhanced Raman scattering (SERS) strategy of detection and in-situ monitoring of photodegradation of Benzo[a]pyrene in water.

Anal Chim Acta

January 2025

The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Frontiers Science Center of Biomimetic Catalysis and College of chemistry and materials science, School of Environmental and Geographical Sciences. Shanghai Normal University, Shanghai, 200234, People's Republic of China. Electronic address:

Background: Polycyclic aromatic hydrocarbons (PAHs) are one of the most dangerous persistent organic pollutants in the environment. Due to the discharge of chemical plants and domestic water, the existence of PAHs in sea water and lake water is harmful to human health. A method for rapid detection and removal of PAHs in water needs to be developed.

View Article and Find Full Text PDF

Wintering loons in South Korea face an ongoing threat from polycyclic aromatic hydrocarbons: Shifting sources and potential DNA damage.

Environ Pollut

January 2025

Department of Biological Sciences, College of Natural Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea. Electronic address:

Diving birds, particularly those sharing coastal habitats with fishing grounds, are at risk from oil pollution. Despite documented cases of bird mortality, the specific role of oil pollution in these death remains unclear. To address this knowledge gap, this study examined polycyclic aromatic hydrocarbon (PAH) contamination, its sources, and its impact on loon health.

View Article and Find Full Text PDF

Measurements of polycyclic aromatic hydrocarbons (PAHs) were simultaneously carried out at three different urban locations in Croatia (Zagreb, Slavonski Brod and Vinkovci) characterized as urban residential (UR), urban industrial (UI) and urban background (UB), respectively. This was done in order to determine seasonal and spatial variations, estimate dominant pollution sources for each area and estimate the lifetime carcinogenic health risks from atmospheric PAHs. Mass concentrations of PAHs showed seasonal variation with the highest values during the colder period and the lowest concentration during the warmer period of the year.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!