Certain animal species use the earth's magnetic field (i.e., magnetoreception) in conjunction with other sensory modalities to navigate long distances. It is hypothesized that several animals use combinations of magnetic inclination and intensity as unique signatures for localization, potentially enabling migration without a pre-surveyed map. However, it is unknown how animals use magnetic signatures to generate guidance commands. While animal experiments have been invaluable in advancing this area, it is a difficult phenomenon to study in vivo or in situ. Modeling and simulation present a powerful complementary tool that can be used to investigate whether and how animals use magnetic signatures to navigate. This perspective article summarizes work we have conducted that systematically and mechanistically uses modeling and simulation to study the use of magnetic signatures. We have studied this phenomenon from simulated agents that navigate in simple and abstract environments, to physical devices that navigate in realistic environments. The results have consistently demonstrated that this is a plausible way in which animals might navigate, and provided early insights into the environmental and animal-specific factors that are most important to this navigation strategy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00359-021-01523-0 | DOI Listing |
Molecules
December 2024
Institute of Chemistry, University of Campinas UNICAMP, Campinas 13083-862, SP, Brazil.
HSP70 chaperones play pivotal roles in facilitating protein folding, refolding, and disaggregation through their binding and releasing activities. This intricate process is further supported by J-domain proteins (JDPs), also known as DNAJs or HSP40s, which can be categorized into classes A and B. In yeast, these classes are represented by Ydj1 and Sis1, respectively.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China.
The abrupt drop of resistance to zero at a critical temperature is a key signature of the current paradigm of the metal-superconductor transition. However, the emergence of an intermediate bosonic insulating state characterized by a resistance peak preceding the onset of the superconducting transition has challenged this traditional understanding. Notably, this phenomenon has been predominantly observed in disordered or chemically doped low-dimensional systems, raising intriguing questions about the generality of the effect and its underlying fundamental physics.
View Article and Find Full Text PDFAlzheimers Res Ther
January 2025
Laboratory for Clinical Neuroscience, Center for Biomedical Technology, Universidad Politécnica de Madrid, IdISSC, Crta M40, km38, Madrid, 28223, Spain.
Background: Dementia patients commonly present multiple neuropathologies, worsening cognitive function, yet structural neuroimaging signatures of dementia have not been positioned in the context of combined pathology. In this study, we implemented an MRI voxel-based approach to explore combined and independent effects of dementia pathologies on grey and white matter structural changes.
Methods: In 91 amnestic dementia patients with post-mortem brain donation, grey matter density and white matter hyperintensity (WMH) burdens were obtained from pre-mortem MRI and analyzed in relation to Alzheimer's, vascular, Lewy body, TDP-43, and hippocampal sclerosis (HS) pathologies.
Talanta
January 2025
Department of Bioprocess Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk State, 54896, Republic of Korea; School of Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk State, 54896, Republic of Korea. Electronic address:
Exosomes, crucial for intercellular communication, hold potential as noninvasive liquid biopsy biomarkers especially in early breast cancer detection benefitted from the distinctive "cancer signature" on their membrane surface. Yet, the present methodologies of exosomes for breast cancer detection have involved the implementation of only a single member from the tetraspanin protein group as a biomarker. Moreso, due to the high concentration of exosomes in complex body fluids, there is a compelling need to measure a small concentration of cancer-derived exosomes with a low background noise signal.
View Article and Find Full Text PDFAbdom Radiol (NY)
January 2025
First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
Purpose: HER2 expression is crucial for the application of HER2-targeted antibody-drug conjugates. This study aims to construct a predictive model by integrating multiparametric magnetic resonance imaging (mpMRI) based multimodal radiomics and the Vesical Imaging-Reporting and Data System (VI-RADS) score for noninvasive identification of HER2 status in bladder urothelial carcinoma (BUC).
Methods: A total of 197 patients were retrospectively enrolled and randomly divided into a training cohort (n = 145) and a testing cohort (n = 52).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!