Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
(Quantitative) structure-activity relationship ([Q]SAR) methodologies are widely applied to predict the (eco)toxicological effects of chemicals, and their use is envisaged in different regulatory frameworks for filling data gaps of untested substances. However, their application to the risk assessment of nanomaterials is still limited, also due to the scarcity of large and curated experimental datasets. Despite a great amount of nanosafety data having been produced over the last decade in international collaborative initiatives, their interpretation, integration and reuse has been hampered by several obstacles, such as poorly described (meta)data, non-standard terminology, lack of harmonized reporting formats and criteria. Recently, the FAIR (Findable, Accessible, Interoperable, and Reusable) principles have been established to guide the scientific community in good data management and stewardship. The EU H2020 Gov4Nano project, together with other international projects and initiatives, is addressing the challenge of improving nanosafety data FAIRness, for maximizing their availability, understanding, exchange and ultimately their reuse. These efforts are largely supported by the creation of a common Nanosafety Data Interface, which connects a row of project-specific databases applying the eNanoMapper data model. A wide variety of experimental data relating to characterization and effects of nanomaterials are stored in the database; however, the methods, protocols and parameters driving their generation are not fully mature. This article reports the progress of an ongoing case study in the Gov4nano project on the reuse of Comet genotoxicity data, focusing on the issues and challenges encountered in their FAIRification through the eNanoMapper data model. The case study is part of an iterative process in which the FAIRification of data supports the understanding of the phenomena underlying their generation and, ultimately, improves their reusability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8591730 | PMC |
http://dx.doi.org/10.1016/j.comtox.2021.100190 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!