Inosine, guanosine and adenosine strongly stimulated proinsulin biosynthesis and insulin secretion in isolated mouse pancreatic islets. None of the purine ribonucleosides stimulated insulin secretion in rat islets, although as reported [jain & Logothetopoulos (1977) Endocrinilogy 100, 923-927] inosine and guanosine, but no adenosine, were potent stimulants of proinsulin biosynthesis in this species. The purine bases had no effect in either species. D-Ribose, which enhanced proinsulin biosynthesis at 0.3 and 0.6 mM but not at 5mM in rat pancreatic islets [jain & Logothetopoulos (1977) Endocrinology 100, 923-927], produced no secretory signals in rat islets and was without any effect on proinsulin biosynthesis and insulin secretion in mouse islets. The rates of oxidation of 14C-labelled purine ribonucleosides and D-ribose in islets of the two species correlated well with their effectiveness as inducers of insulin secretion and proinsulin biosynthesis. Specific inhibitors of purine ribonucleoside phosphorylase, adenosine deaminiase and of purine ribonucleoside transport suppressed the stimulatory effects of nucleosides in pancreatic islets without altering the effect of D-glucose. The same inhibitors also markedly diminished the oxidation rats of the labelled purine ribonucleosides. The experiments clearly indicate that porinsulin biosynthesis and insulin secretion are modulated through metabolic signals and not through interactions of intact substrate molecules with cell receptors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1183920PMC
http://dx.doi.org/10.1042/bj1700461DOI Listing

Publication Analysis

Top Keywords

proinsulin biosynthesis
24
insulin secretion
24
purine ribonucleosides
16
biosynthesis insulin
16
pancreatic islets
12
metabolic signals
8
inosine guanosine
8
guanosine adenosine
8
rat islets
8
[jain logothetopoulos
8

Similar Publications

Vascularization of human islets by adaptable endothelium for durable and functional subcutaneous engraftment.

Sci Adv

January 2025

Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.

Tissue-specific endothelial cells (ECs) are critical for the homeostasis of pancreatic islets and most other tissues. In vitro recapitulation of islet biology and therapeutic islet transplantation both require adequate vascularization, which remains a challenge. Using human reprogrammed vascular ECs (R-VECs), human islets were functionally vascularized in vitro, demonstrating responsive, dynamic glucose-stimulated insulin secretion and Ca influx.

View Article and Find Full Text PDF

Insulin plays a key role in metabolic homeostasis. insulin-producing cells (IPCs) are functional analogues of mammalian pancreatic beta cells and release insulin directly into circulation. To investigate the in vivo dynamics of IPC activity, we quantified the effects of nutritional and internal state changes on IPCs using electrophysiological recordings.

View Article and Find Full Text PDF

The DAF-2/insulin/insulin-like growth factor signaling (IIS) pathway plays an evolutionarily conserved role in regulating reproductive development, life span, and stress resistance. In Caenorhabditis elegans, DAF-2/IIS signaling is modulated by an extensive array of insulin-like peptides (ILPs) with diverse spatial and temporal expression patterns. However, the release dynamics and specific functions of these ILPs in adapting to different environmental conditions remain poorly understood.

View Article and Find Full Text PDF

Purpose: Heterozygous mutations in the insulin gene can give rise to a monogenic diabetes syndrome due to toxic misfolding of the variant proinsulin in the endoplasmic reticulum (ER) of pancreatic β-cells. Clinical mutations are widely distributed in the sequence (86 amino acids). Misfolding induces chronic ER stress and interferes in with wildtype biosynthesis and secretion.

View Article and Find Full Text PDF

Introduction: CarboxypeptidaseE (CPE) is an enzyme involved in the neuropepetides/hormones processing. Its deficiency is associated with endocrinopathies comparable to those caused by proprotein convertase1/3(PC1/3) deficiency. In this case report we expand the clinical features of CPE deficiency by examining the index case's clinical/laboratory results, which are also indicative of PC1/3 deficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!