Bistable motoneurons of the spinal cord exhibit warmth-activated plateau potential driven by Na and triggered by a brief excitation. The thermoregulating molecular mechanisms of bistability and their role in motor functions remain unknown. Here, we identify thermosensitive Na-permeable Trpm5 channels as the main molecular players for bistability in mouse motoneurons. Pharmacological, genetic or computational inhibition of Trpm5 occlude bistable-related properties (slow afterdepolarization, windup, plateau potentials) and reduce spinal locomotor outputs while central pattern generators for locomotion operate normally. At cellular level, Trpm5 is activated by a ryanodine-mediated Ca release and turned off by Ca reuptake through the sarco/endoplasmic reticulum Ca-ATPase (SERCA) pump. Mice in which Trpm5 is genetically silenced in most lumbar motoneurons develop hindlimb paresis and show difficulties in executing high-demanding locomotor tasks. Overall, by encoding bistability in motoneurons, Trpm5 appears indispensable for producing a postural tone in hindlimbs and amplifying the locomotor output.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8613399PMC
http://dx.doi.org/10.1038/s41467-021-27113-xDOI Listing

Publication Analysis

Top Keywords

trpm5 channels
8
trpm5
6
motoneurons
5
channels encode
4
bistability
4
encode bistability
4
bistability spinal
4
spinal motoneurons
4
motoneurons ensure
4
ensure motor
4

Similar Publications

Background: Clear cell renal cell carcinoma (ccRCC) has a high incidence rate and poor prognosis, and currently lacks effective therapies. Recently, peptide-based drugs have shown promise in cancer treatment. In this research, a new endogenous peptide called CBDP1 was discovered in ccRCC and its potential anti-cancer properties were examined.

View Article and Find Full Text PDF

The TRP Channels Serving as Chemical-to-Electrical Signal Converter.

Physiol Rev

January 2025

Department of Physiology and Membrane Biology, University of California, Davis, School of Medicine, Davis CA, 95616, USA.

Biology uses many signaling mechanisms. Among them, calcium and membrane potential are two prominent mediators for cellular signaling. TRPM4 and TRPM5, two calcium-activated monovalent cation-conducting ion channels, offer a direct linkage between these two signals.

View Article and Find Full Text PDF

Tracheal tuft cells shape immune responses in the airways. While some of these effects have been attributed to differential release of either acetylcholine, leukotriene C4 and/or interleukin-25 depending on the activating stimuli, tuft cell-dependent mechanisms underlying the recruitment and activation of immune cells are incompletely understood. Here we show that Pseudomonas aeruginosa infection activates mouse tuft cells, which release ATP via pannexin 1 channels.

View Article and Find Full Text PDF

Loss-of-function (LOF) mutations in KATP channels cause hyperexcitability and insulin hypersecretion, resulting in congenital hyperinsulinism (CHI). Paradoxically, despite the initial insulin hypersecretion, many CHI cases, as well as KATP knockout (KO) animals, eventually 'crossover' to undersecretion and even diabetes. Here we confirm that Sur1 KO islets exhibit higher intracellular [Ca2+] ([Ca2+]i) at all [glucose], but show decreased glucose-stimulated insulin secretion.

View Article and Find Full Text PDF

Conservation of the cooling agent binding pocket within the TRPM subfamily.

Elife

November 2024

Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States.

Transient receptor potential (TRP) channels are a large and diverse family of tetrameric cation-selective channels that are activated by many different types of stimuli, including noxious heat or cold, organic ligands such as vanilloids or cooling agents, or intracellular Ca. Structures available for all subtypes of TRP channels reveal that the transmembrane domains are closely related despite their unique sensitivity to activating stimuli. Here, we use computational and electrophysiological approaches to explore the conservation of the cooling agent binding pocket identified within the S1-S4 domain of the Melastatin subfamily member TRPM8, the mammalian sensor of noxious cold, with other TRPM channel subtypes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!