The impact of water depth and speed on muscle fiber activation of healthy dogs walking in a water treadmill.

Acta Vet Scand

Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 15, 1870, Frederiksberg, Denmark.

Published: November 2021

Background: Water treadmills are frequently used in the rehabilitation of dogs, for example with the purpose of re-building muscular strength after surgery. However, little is known about how different water depths and velocities affect the muscular workload during aquatic locomotion. This study used acoustic myography to assess hind limb muscle fiber activation in 25 healthy large-breed dogs walking in a water treadmill. Acoustic myography sensors were attached to the skin over the vastus lateralis of the quadriceps and the biceps femoris muscles. The dogs walked at two velocities (30 and 50 m/min) and four water depths: bottom of the pads, hock, stifle and mid-femur. Acoustic myograph signals were analyzed for changes in three muscle function parameters: efficiency/coordination (E-score) and spatial (S-score) and temporal (T-score) summation.

Results: Differences between E, S, and T were statistically significant compared across different speeds (30, 50) and water levels (0, 1, 2, 3) using a one-way ANOVA with multiple comparisons (Tukey; Geisser-Greenhouse correction) as well as a two-tailed one sample t-test. At 50 m/min in water at the mid-femur, the biceps femoris was less efficient (P < 0.001) and recruited more fibers (P = 0.01) at a higher firing rate (P = 0.03) compared to working in shallower water, while the vastus lateralis was also less efficient (P < 0.01), but spatial and temporal summation did not change significantly. At 30 m/min, biceps efficiency was reduced (P < 0.01) when water was at the mid-femur compared to the bottom of the pads level. Walking in stifle- or hock-deep water did not show increased muscle activation for either muscle compared to walking in water at the bottom of the pads.

Conclusion: More muscle activation was required to walk in water at a depth at the level of the mid-femur compared to shallower water, and this exercise was more demanding for the biceps femoris, a muscle engaged in propulsion, than for vastus lateralis. These findings may help practitioners towards making more precise rehabilitation protocols.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8611859PMC
http://dx.doi.org/10.1186/s13028-021-00612-zDOI Listing

Publication Analysis

Top Keywords

muscle fiber
8
fiber activation
8
activation healthy
8
dogs walking
8
walking water
8
water treadmill
8
water depths
8
acoustic myography
8
biceps femoris
8
50 m/min water
8

Similar Publications

Differential Myf5 and Myf6 expression and muscle fiber traits in Angora, Hair, Honamlı, and Kilis goats.

Trop Anim Health Prod

January 2025

Department of Agricultural Biotechnology, Faculty of Agriculture, Kırşehir Ahi Evran University, 40100, Kirsehir, Türkiye.

The present study was conducted on specific skeletal muscles of six weaned male kids from each of the Angora, Hair, Honamlı, and Kilis goat breeds. The relationships between the expression of myogenic factor 5 (Myf5) and myogenic factor 6 (Myf6) genes and muscle fibre characteristics were analysed. Muscle samples from the longissimus dorsi (LD) and semitendinosus (ST) were collected from six 90-day-old weaned male kids of each breed.

View Article and Find Full Text PDF

Nanoencapsulated Optical Fiber-Based PEC Microelectrode: Highly Sensitive and Specific Detection of NT-proBNP and Its Implantable Performance.

Anal Chem

January 2025

Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.

Microelectrodes offer exceptional sensitivity, rapid response, and versatility, making them ideal for real-time detection and monitoring applications. Photoelectrochemical (PEC) sensors have shown great value in many fields due to their high sensitivity, fast response, and ease of operation. Nevertheless, conventional PEC sensing relies on cumbersome external light sources and bulky electrodes, hindering its miniaturization and implantation, thereby limiting its application in real-time disease monitoring.

View Article and Find Full Text PDF

Background: Chronic soft tissue injury is characterized by sterile inflammation and pain. Gua sha with Masanggoubang oil (GSMO) treatment has been found to possess anti-inflammatory and analgesic effects.

Objectives: To explore the mechanism of GSMO in chronic soft tissue injuries.

View Article and Find Full Text PDF

Photobiomodulation and aquatic training reduce TNF-α expression and enhance muscle fiber area in Wistar rats with compensatory hypertrophy.

Lasers Med Sci

January 2025

Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), 235/249 Vergueiro Street, Sao Paulo, SP, 01525000, Brazil.

This study aims to assess the effects of aquatic training (AT) and its combination with photobiomodulation (PBM) on cytokine synthesis and plantar muscle morphology during compensatory hypertrophy (H) in Wistar rats. H was induced by bilateral ablation of synergistic muscles, and PBM using a laser (780 nm). AT involved 60 min sessions, 5 times/week, for 7 and 14 days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!