Aloin induced apoptosis by enhancing autophagic flux through the PI3K/AKT axis in osteosarcoma.

Chin Med

Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.

Published: November 2021

Background: Osteosarcoma is a malignant tumor of bone and soft tissue in adolescents. Due to its tumor biological behavior pattern, osteosarcoma usually generates poor prognosis. Autophagy is an important self-defense mechanism in osteosarcoma.

Methods: Cell viability in IC testing and reverse assays was examined by the MTT assay. Cell apoptosis conditions were examined by flow cytometry, Hoechst 33,342 staining and apoptosis-related protein immunoblotting. Autophagy conditions were tested by autophagy-related protein immunoblotting, transmission electron microscopic observation and dual fluorescence autophagy flux detection. The possible targets of aloin were screened out by network pharmacology and bioinformatic methods. Osteosarcoma xenografts in nude BALB/c mice were the model for in vivo research on tumor suppression, autophagy induction, pathway signaling and toxicity tests. In vivo bioluminescence imaging systems, immunohistochemical assays, and gross tumor volume comparisons were applied as the main research methods in vivo.

Results: Aloin induced osteosarcoma apoptosis in a dose-dependent manner. Its possible effects on the PI3K/AKT pathway were screened out by network pharmacology methods. Aloin increased autophagic flux in osteosarcoma by downregulating the PI3K/AKT pathway. Aloin promoted autophagic flux in the osteosarcoma cell lines HOS and MG63 in a dose-dependent manner by promoting autophagosome formation. Chloroquine reversed the apoptosis-promoting and autophagy-enhancing effects of aloin. Autophagy induced by starvation and rapamycin significantly enhanced the autophagic flux and apoptosis induced by aloin, which verified the role of the PI3K/AKT axis in the pharmacological action of aloin. Therapeutic effects, autophagy enhancement and regulatory effects on the PI3K/AKT/mTOR pathway were demonstrated in a nude mouse xenogeneic osteosarcoma transplantation model.

Conclusions: Aloin inhibited the proliferation of osteosarcoma by inhibiting the PI3K/AKT/mTOR pathway, increasing autophagic flux and promoting the apoptosis of osteosarcoma cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8611986PMC
http://dx.doi.org/10.1186/s13020-021-00520-4DOI Listing

Publication Analysis

Top Keywords

autophagic flux
20
osteosarcoma
10
aloin
9
aloin induced
8
pi3k/akt axis
8
protein immunoblotting
8
screened network
8
network pharmacology
8
dose-dependent manner
8
pi3k/akt pathway
8

Similar Publications

Danshensu enhances autophagy and reduces inflammation by downregulating TNF-α to inhibit the NF-κB signaling pathway in ischemic flaps.

Phytomedicine

January 2025

Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China,; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China, ; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China. Electronic address:

Background: The significant distal necrosis of the random-pattern skin flaps greatly restricts their clinical applications in flap transplantation. Previous studies have demonstrated the potential of danshensu (DSS) to alleviate ischemic tissue injury. However, no research to date has confirmed whether DSS can improve the survival of ischemic flaps.

View Article and Find Full Text PDF

Acute pancreatitis (AP) is a highly fatal pancreatic inflammation. In recent years, synthetic nanoparticles have been extensively developed as drug carriers to address the challenges of systemic adverse reactions and lack of specificity in drug delivery. However, systemically administered nanoparticle therapy is rapidly cleared from circulation by the mononuclear phagocyte system (MPS), leading to suboptimal drug concentrations in inflamed tissues and suboptimal pharmacokinetics.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is marked by extracellular beta-amyloid (Aβ) plaques and intracellular Tau tangles, leading to progressive cognitive decline and neuronal dysfunction. Impaired autophagy, a process by which a cell breaks down and destroys damaged or abnormal proteins and other substances, contributes to AD progression. This study investigated Nuclear Receptor Subfamily 1 Group D Member 1 (NR1D1) as a potential therapeutic target for modulating autophagy.

View Article and Find Full Text PDF

TFEB activator protects against ethanol toxicity-induced cardiac injury by restoring mitophagy and autophagic flux.

Biochim Biophys Acta Mol Basis Dis

January 2025

College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China. Electronic address:

Excessive alcohol consumption is a major cause of alcoholic cardiomyopathy (ACM) and myocardial injury. This study aims to investigate the role of transcription factor EB (TFEB) in ethanol-induced cardiac anomalies using a murine model, AC16 human cardiomyocytes, and human plasma. Wild-type mice treated with a TFEB activator (Compound 1) or vehicle (25 mg/kg/d) were challenged with or without ethanol (3 g/kg/d, i.

View Article and Find Full Text PDF

Autophagic flux blockade and excessive oxidative stress play important roles in the pathogenesis of diabetic vascular calcification (VC). Transcription factor EB (TFEB) is an important regulator of many autophagy-lysosomal related components, which is mainly involved in promoting autophagy process in cells. Nuclear factor erythroid-2 related factor 2 (Nrf2) antioxidant system is considered as one of the key pathways in response to intracellular oxidative stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!