Management impacts on the dissolved organic carbon release from deadwood, ground vegetation and the forest floor in a temperate Oak woodland.

Sci Total Environ

Soil Research Centre, Department of Geography and Environmental Science, University of Reading, Whiteknights, PO Box 227, Reading RG6 6AB, UK.

Published: January 2022

The forest floor is often considered the most important source of dissolved organic carbon (DOC) in forest soils, yet little is known about the relative contribution from different forest floor layers, understorey vegetation and deadwood. Here, we determine the carbon stocks and potential DOC production from forest materials: deadwood, ground vegetation, leaf litter, the fermentation layer and top mineral soil (Ah horizon), and further assess the impact of management. Our research is based on long-term monitoring plots in a temperate deciduous woodland, with one set of plots actively managed by thinning, understorey scrub and deadwood removal, and another set that were not managed in 23 years. We examined long-term data and a spatial survey of forest materials to estimate the relative carbon stocks and concentrations and fluxes of DOC released from these different pools. Long-term soil water monitoring revealed a large difference in median DOC concentrations between the unmanaged (43.8 mg L) and managed (18.4 mg L) sets of plots at 10 cm depth over six years, with the median DOC concentration over twice as high in the unmanaged plots. In our spatial survey, a significantly larger cumulative flux of DOC was released from the unmanaged than the managed site, with 295.5 and 230.3 g m, respectively. Whilst deadwood and leaf litter released the greatest amount of DOC per unit mass, when volume of the material was considered, leaf litter contributed most to DOC flux, with deadwood contributing least. Likewise, there were significant differences in the carbon stocks held by different forest materials that were dependent on site. Vegetation and the fermentation layer held more carbon in the managed site than unmanaged, whilst the opposite occurred in deadwood and the Ah horizon. These findings indicate that management affects the allocation of carbon stored and DOC released between different forest materials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.150399DOI Listing

Publication Analysis

Top Keywords

forest materials
16
forest floor
12
carbon stocks
12
leaf litter
12
doc released
12
doc
9
dissolved organic
8
organic carbon
8
deadwood ground
8
ground vegetation
8

Similar Publications

Biogas upgrading using aqueous bamboo-derived activated carbons.

Bioresour Technol

January 2025

Energy Engineering, Division of Energy Science, Luleå University of Technology, Luleå 97187, Sweden. Electronic address:

CO/CH separation is crucial for biogas upgrading. In this study, the bamboo-derived activated carbons (BACs) were prepared with different ratios of potassium hydroxide (KOH)/bamboo charcoal (BC), and the hybrid sorbents of aqueous BACs were developed for CO/CH separation. Both the gas solubility and sorption rate were measured, and Henry's constant and liquid-side mass-transfer coefficient as well as the CO/CH selectivity were calculated.

View Article and Find Full Text PDF

Engineered sulfonated porous carbon/cellulose nanofiber hybrid membrane for high-efficiency osmotic energy conversion applications.

Int J Biol Macromol

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

Harnessing ionic gradients to generate electricity has inspired the development of nanofluidic membranes with charged nanochannels for osmotic energy conversion. However, achieving high-performance osmotic energy output remains elusive due to the trade-off between ion selectivity and nanochannel membrane permeability. In this study, we report a homogeneous nanofluidic membrane, composed of sulfonated nanoporous carbon (SPC) and TEMPO-oxidized cellulose nanofibers (T-CNF), engineered to overcome these limitations.

View Article and Find Full Text PDF

Elucidating the synergistic action between sulfonated lignin and lytic polysaccharide monooxygenases (LPMOs) in enhancing cellulose hydrolysis.

Int J Biol Macromol

January 2025

Forest Product Biotechnology/Bioenergy Group, Department of Wood Science, University of British Columbia, 2424 Main Mal, Vancouver V6T 1Z4, Canada. Electronic address:

Modern enzyme cocktails often include lytic polysaccharide monooxygenase (LPMO) as an accessory enzyme that enhances cellulose accessibility during hydrolysis. Although lignin is known to generally impede cellulose hydrolysis, previous research has demonstrated lignin's potential to act as a co-factor in boosting LPMO activity and that the negative impact of lignin limiting enzyme accessibility can be mitigated by sulfonated. When sulphonated lignin was added to microcrystalline cellulose (Avicel) the activity of the lytic polysaccharide monooxygenase (LPMO) was boosted, as determined when using a quartz crystal microbalance and dissipation monitoring (QCM-D).

View Article and Find Full Text PDF

Dynamically mechanochromic, fluorescence-responsive, and underwater sensing cellulose nanocrystal-based conductive elastomers.

Int J Biol Macromol

January 2025

Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab Pulp & Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, PR China. Electronic address:

Utilizing cellulose nanocrystals (CNCs) to mimic biological skin capable of converting external stimuli into optical and electrical signals represents a significant advancement in the development of advanced photonic materials. However, traditional CNC photonic materials typically exhibit static and singular optical properties, with their structural color and mechanical performance being susceptible to water molecules, thereby limiting their practical applications. In this study, CNC-based conductive elastomers with dynamic mechanochromism, fluorescence responsiveness, and enhanced water resistance were developed by incorporating carbon quantum dots (C QDs) and hydrophobic deep eutectic solvents (HDES) into CNC photonic films via an in-situ swelling-photopolymerization method.

View Article and Find Full Text PDF

A novel carbazole-pyrimidine-based dual mode fluorescent probe for detection of acidic and basic pH in biological systems.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037 China. Electronic address:

pH balance is an important factor in regulating the internal environment of body and maintaining the normal physiological activities, but pH cannot be detected in vivo without damaging the tissue. It is important to develop a pH probe with low toxicity, high sensitivity and targeting of organelles. In this research, a novel carbazole-pyrimidine-based probe PKZP was designed from 2-hydroxyl-3-pinanone which was derived from natural monoterpene α-pinene for detecting both acidic and basic pH in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!