A phenomenon called alternans, which is a beat-to-beat alternation in action potential (AP) duration, sometimes precedes fatal cardiac arrhythmias. Alternans-suppressing electrical stimulus protocols are often represented as perturbations to the dynamics of membrane potential or AP duration variables in nonlinear models of cardiac tissue. Controllability analysis has occasionally been applied to cardiac AP models to determine whether different control or perturbation strategies are capable of suppressing alternans or other unwanted behavior. Since almost all previous cardiac controllability studies have focused on low-dimensional models, we conducted the present study to assess controllability of a higher-dimensional model, specifically the Luo Rudy dynamic (LRd) model of a cardiac ventricular myocyte. Higher-dimensional models are of interest because they provide information on the influence of a wider range of measurable quantities, including ionic concentrations, on controllability. After computing modal controllability measures, we found that larger eigenvalues of a linearized LRd model were on average more strongly controllable through perturbations to calcium-ion concentrations compared with perturbations to other variables. When only membrane potential was adjusted, the best time to apply perturbations (in the sense of maximizing controllability of the largest alternans eigenvalue) was near the AP peak time for shorter cycle lengths. Controllability results were found to be similar for both the default model parameters and for an alternans-promoting parameter set. Additionally, we developed several alternans-suppressing state feedback controllers that were tested in simulations. For the scenarios examined, our controllability measures correctly predicted which strategies and perturbation timings would lead to better feedback controller performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2021.104909 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Ritsumeikan University: Ritsumeikan Daigaku, Applied Chemistry, B805 Biolink, 1-1-1 Nojihigashi, 525-8577, Kusatsu, JAPAN.
Inorganic photochromic materials offer several advantages over organic compounds, including relatively inexpensive and higher thermal stability. However, tuning their color with the same component has remained a significant challenge. In this study, we demonstrate that the photochromic color of Cu-doped ZnS nanocrystals (NCs), which is initially pale yellow before light irradiation, can be tuned from gray to brown by adjusting the surface stoichiometry of Zn and S, which is controlled through the use of thiol and non-thiol ligands.
View Article and Find Full Text PDFNano Lett
January 2025
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China.
Precise imaging of noncoding RNAs (ncRNAs) in specific organelles allows decoding of their functions at subcellular level but lacks advanced tools. Here we present a DNA-based nanobiotechnology for spatially selective imaging of ncRNA (e.g.
View Article and Find Full Text PDFMicrob Genom
January 2025
Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, rebro University, rebro, Sweden.
National epidemiological investigations of microbial infections greatly benefit from the increased information gained by whole-genome sequencing (WGS) in combination with standardized approaches for data sharing and analysis. To evaluate the quality and accuracy of WGS data generated by different laboratories but analysed by joint pipelines to reach a national surveillance approach. A national methicillin-resistant (MRSA) collection of 20 strains was distributed to nine participating laboratories that performed in-house procedures for WGS.
View Article and Find Full Text PDFInt J Surg
January 2025
Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
Background: This study tested the hypothesis that extracorporeal shockwave therapy (ECSWT) effectively rescues critical limb ischemia (CLI) in mice through the upregulation of GPR120, which protects against inflammation and angiogenesis to restore blood flow in the ischemic area.
Methods And Results: Compared with the control, ECSWT-induced GPR120-mediated anti-inflammatory effects significantly suppressed the expression of inflammatory signaling biomarkers (TAK1/MAPK family/NF-κB/IL-1β/IL-6/TNF-α/MCP-1) in HUVECs, and these effects were abolished by silencing GPR120 or by the GPR120 antagonist AH7614 (all P < 0.001).
Int J Surg
January 2025
Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, SAR.
Background: Understanding based on up-to-date data on the burden of non-communicable diseases (NCDs) is limited, especially regarding how subtypes contribute to the overall NCD burden and the attributable risk factors across locations and subtypes. We aimed to report the global, regional, and national burden of NCDs, subtypes, and attributable risk factors in 2021, and trends from 1990 to 2021 by age, sex, and socio-demographic index (SDI).
Materials And Methods: We used data from the Global Burden of Disease Study 2021 to estimate the prevalence, deaths, and disability-adjusted life years (DALYs) for NCDs and subtypes, along with attributable risk factors.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!