Modified montmorillonite-bacterial cellulose composites as a novel dressing system for pressure injury.

Int J Biol Macromol

Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, 88906-072 Araranguá, SC, Brazil; Post-Graduate Program of Neuroscience, Center of Biological Sciences, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil. Electronic address:

Published: January 2022

The main objective of this study was to investigate the effects of bacterial cellulose hydrogel (BCH) incorporated into montmorillonite (MMT) and its underlying mechanisms of action on a skin wound healing mouse model following pressure injury model. Komagataeibacter hansenii was used to obtain 5 cm in diameter and 0.8 mm of thickness circular bacterial cellulose (BC) sheets, which were incorporated with MMT by deposition ex-site using a 0.1% MMT suspension (100 rpm for 24 h at 28 °C). Afterward, Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscopy (SEM) were used to characterize the bacterial cellulose hydrogel incorporated into montmorillonite (BCH-MMT). The pressure injury model was assessed by macroscopic and histological analysis in male Swiss mice. Both, BC and BCH-MMT, showed a typical FTIR spectrum of cellulosic substrates with pronounces bands around 3344, 2920, 1637, and 1041 cm while microparticles of MMT dispersed uniformly throughout BC were revealed by SEM photographs. Animals treated with BCH-MMT showed significant healing of pressure ulcers as demonstrated by reduced area of redness and spontaneous hyperalgesia, lower amounts of in-site inflammatory cells (to the same level as the positive control Dersani®) and ultimately, complete epidermis re-epithelialization and tissue regeneration. Altogether, these findings suggest that a modified BCH-MMT film could serve as scaffolding for skin tissue engineering and potentially as a novel dressing material for pressure injury.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2021.11.082DOI Listing

Publication Analysis

Top Keywords

pressure injury
16
bacterial cellulose
12
novel dressing
8
cellulose hydrogel
8
incorporated montmorillonite
8
injury model
8
pressure
5
modified montmorillonite-bacterial
4
cellulose
4
montmorillonite-bacterial cellulose
4

Similar Publications

Purpose: We sought to investigate the expression of MALAT1, plasma brain natriuretic peptide, and Tei index in sepsis-induced myocardial injury.

Methods: The current retrospective analysis focused on 146 sepsis patients admitted to our hospital from February 2021 to March 2023. Based on the presence or absence of myocardial injury, the patients were divided into two groups: the sepsis group (n = 80) and the sepsis-induced myocardial injury group (n = 66).

View Article and Find Full Text PDF

Long-term efficacy of Mirabegron-anticholinergic combination in paediatric neurogenic bladder.

J Pediatr Urol

January 2025

Department of Women and Children's Health, School of Life Course Sciences, Kings College London, London, UK; Children's Bladder Service, Evelina London Children's Hospital, Westminster Bridge Road, London, SE1 7EH, UK.

Introduction: The Mirabegron-anticholinergic (MAC) combination has proven effective as a step-up strategy in managing paediatric neurogenic bladder following anticholinergic medication and botulinum toxin (BTX) therapy. This study assesses the long-term efficacy of MAC in children with neurogenic bladder.

Patients And Methods: A retrospective chart review was conducted from 2015 to 2023, including consecutive paediatric patients receiving Mirabegron (25/50 mg) with an anticholinergic agent (solifenacin 16, tolterodine 7, oxybutynin 7, trospium 1).

View Article and Find Full Text PDF

Background: During infant aortic arch reconstruction, traditional electroencephalography (EEG) provides only qualitative data limiting neuromonitoring efficacy. Interhemispheric differences in the alpha:delta ratio (ADR) and suppression ratio (SR) measured using quantitative EEG generate numerical trends that may suggest cerebral ischemia. We hypothesized that the ADR and SR during cardiopulmonary bypass (CPB) would correlate with hemodynamics, and that ADR and SR interhemispheric differences would precede neurological injury from infants requiring aortic arch reconstruction.

View Article and Find Full Text PDF

Evolving concepts in intracranial pressure monitoring - from traditional monitoring to precision medicine.

Neurotherapeutics

January 2025

Division of Neurosciences Critical Care, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA. Electronic address:

A wide range of acute brain injuries, including both traumatic and non-traumatic causes, can result in elevated intracranial pressure (ICP), which in turn can cause further secondary injury to the brain, initiating a vicious cascade of propagating injury. Elevated ICP is therefore a neurological injury that requires intensive monitoring and time-sensitive interventions. Patients at high risk for developing elevated ICP undergo placement of invasive ICP monitors including external ventricular drains, intraparenchymal ICP monitors, and lumbar drains.

View Article and Find Full Text PDF

Sport-related concussions are a common type of brain injury, and the best treatment is prevention. Recently, external jugular vein compression collars have been worn by National Football League players, but the current evidence is limited. To the best of the authors' knowledge, this is the first comprehensive, up-to-date systematic review addressing the use of jugular vein compression collars for decreasing concussion incidence in high-impact sports and activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!