Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The design of ultrasensitive ionic thermopiles is important for low-grade heat collection and temperature sensing. However, high-quality ionic thermoelectric materials with negative thermopower have been rarely reported to date. Effective adjustment of the interaction between the polymer network and the electrolyte anion/cation is an important method to achieve notable thermopower. Here, we demonstrate an ionic hydrogel thermoelectric material with giant negative thermopower obtained by synergistic coordination and hydration interactions. The ionic hydrogel, made of polyvinyl alcohol and sodium hydroxide, is prepared by simple dry-annealed process and exhibits a thermopower of up to −37.61 millivolts per kelvin, an extremely high absolute thermopower for electronic and ionic conductors. This ionic hydrogel is promising for the design of high-thermopower ionic thermoelectric materials and the low-grade heat energy harvesting.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8612679 | PMC |
http://dx.doi.org/10.1126/sciadv.abi7233 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!