Backbone H, N, and C resonance assignments of the non-structural protein NS2B of Zika virus.

Biomol NMR Assign

Institute of Medical Biochemistry (IBqM), National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.

Published: April 2022

Zika virus (ZIKV) emerged as a global public health concern due to its relationship with severe neurological disorders. Non-structural (NS) proteins of ZIKV are essential for viral replication, regulatory function, and subversion of host responses. NS2B is a membrane protein responsible for the regulation of viral protease activity. This protein has transmembrane domains critical for the localization of viral protease to the endoplasmic reticulum membrane and a hydrophilic domain essential for folding, recruitment, and protease activity. Therefore, NS2B is considered a cofactor of viral protease which processes viral polyprotein and is essential for virus replication, making it an attractive antiviral drug target. Here, we report the backbone H, N, C resonance assignments of the full-length NS2B by high-resolution NMR. The backbone assignment will be necessary for determining the three-dimensional structure and backbone dynamics of NS2B, interaction mapping and screening potential of antiviral drugs against ZIKV and related pathogenic flaviviruses.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12104-021-10055-2DOI Listing

Publication Analysis

Top Keywords

viral protease
12
backbone resonance
8
resonance assignments
8
zika virus
8
protease activity
8
ns2b
5
viral
5
backbone
4
assignments non-structural
4
non-structural protein
4

Similar Publications

Objectives: We assessed HIV-1 drug resistance profiles among people living with HIV (PLWH) with detectable viral load (VL) and on dolutegravir-based antiretroviral therapy (ART) in Botswana.

Methods: The study utilised available 100 residual HIV-1 VL samples from unique PLWH in Francistown who had viraemia at-least 6 months after initiating ART in Botswana's national ART program from November 2023 to January 2024. Viraemia was categorized as low-level viraemia (LLV) (VL: 200-999 copies/mL) or virologic failure (VF) (VL ≥1000 copies/mL).

View Article and Find Full Text PDF

HIV-1 assembly is initiated by the binding of Gag polyproteins to the inner leaflet of the plasma membrane, mediated by the myristylated matrix (MA) domain of Gag. Subsequent to membrane binding, Gag oligomerizes and buds as an immature, non-infectious virus particle, which, upon cleavage of the Gag precursor by the viral protease, transforms into a mature, infectious virion. During maturation, the MA lattice underlying the viral membrane undergoes a structural rearrangement and the newly released capsid (CA) protein forms a mature capsid that encloses the viral genome.

View Article and Find Full Text PDF

Introduction: The BIC-T&T study aimed to determine the efficacy of bictegraviremtricitabine/tenofovir alafenamide (BIC/F/TAF) and darunavir/cobicistat/emtricitabinetenofovir alafenamide (DRV/c/F/TAF) at suppressing viral load in a two-arm, open-label, multi-centre, randomised trial under a UK test-and-treat setting. This sub-study aimed to evaluate potential off-target cardiovascular impact by examining platelet function.

Methods: Platelets were isolated by centrifugation of citrated blood from participants attending Chelsea and Westminster Hospital or St Mary's Hospital at Week 48 following enrolment.

View Article and Find Full Text PDF

With current treatments addressing only a fraction of pathogens and new viral threats constantly evolving, there is a critical need to expand our existing therapeutic arsenal. To speed the rate of discovery and better prepare against future threats, we establish a high-throughput platform capable of screening compounds against 40 diverse viral proteases simultaneously. This multiplex approach is enabled by using cellular biosensors of viral protease activity combined with DNA-barcoding technology, as well as several design innovations that increase assay sensitivity and correct for plate-to-plate variation.

View Article and Find Full Text PDF

Effect of trypsin digestion on the integrity and antigenic epitopes of GII.6 norovirus virus-like particles.

Arch Virol

January 2025

Center for Translational Medicine, Affiliated Infectious Diseases Hospital of Zhengzhou University (Henan Infectious Diseases Hospital, The Sixth People's Hospital of Zhengzhou), Zhengzhou, 450000, People's Republic of China.

Trypsin digestion of the GII.6 norovirus (NoV) major capsid protein VP1 promotes its binding to histo-blood group antigens (HBGAs), which are believed to be co-receptors for NoVs. In our previous study, we found that trypsin digestion led to the disassembly of GII.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!